119TH CONGRESS 1ST SESSION	S.	

To require the Secretary of Energy to study new technologies and opportunities for recycling spent nuclear fuel.

IN THE SENATE OF THE UNITED STATES

Mr. Cruz (for himself and Mr. Heinrich) introduced the following bill; which was read twice and referred to the Committee on _____

A BILL

To require the Secretary of Energy to study new technologies and opportunities for recycling spent nuclear fuel.

- 1 Be it enacted by the Senate and House of Representa-
- 2 tives of the United States of America in Congress assembled,
- 3 SECTION 1. SHORT TITLE.
- 4 This Act may be cited as the "Advancing Research
- 5 in Nuclear Fuel Recycling Act of 2025".
- 6 SEC. 2. STUDY ON NEW TECHNOLOGIES TO RECYCLE
- 7 SPENT NUCLEAR FUEL.
- 8 (a) Definitions.—In this section:
- 9 (1) National Laboratory.—The term "Na-
- tional Laboratory' has the meaning given the term

1	in section 2 of the Energy Policy Act of 2005 (42)
2	U.S.C. 15801).
3	(2) Nuclear waste.—The term "nuclear
4	waste" means spent nuclear fuel and high-level ra-
5	dioactive waste (as defined in section 2 of the Nu-
6	clear Waste Policy Act of 1982 (42 U.S.C. 10101)).
7	(3) Recycling.—The term "recycling" means
8	the recovery of valuable radionuclides, including
9	fissile materials, from nuclear waste, and any subse-
10	quent processes, such as enrichment and fuel fab-
11	rication, necessary for reuse in nuclear reactors or
12	other commercial applications.
13	(4) Secretary.—The term "Secretary" means
14	the Secretary of Energy.
15	(5) Spent nuclear fuel.—The term "spent
16	nuclear fuel" has the meaning given the term in sec-
17	tion 2 of the Nuclear Waste Policy Act of 1982 (42
18	U.S.C. 10101).
19	(b) STUDY.—Not later than 90 days after the date
20	of enactment of this Act, the Secretary, acting through
21	the Assistant Secretary for Nuclear Energy, shall carry
22	out a study—
23	(1) to analyze the practicability, potential bene-
24	fits, costs, and risks, including proliferation, of using
25	dedicated recycling facilities to convert spent nuclear

1	fuel, including spent high-assay low-enriched ura
2	nium fuel, into useable nuclear fuels, such as those
3	for—
4	(A) commercial light water reactors;
5	(B) advanced nuclear reactors; and
6	(C) medical, space-based, advanced-bat
7	tery, and other non-reactor applications, as de
8	termined by the Secretary;
9	(2)(A) to analyze the practicability, potentia
10	benefits, costs, and risks of recycling spent nuclear
11	fuel, which is taken from temporary storage sites
12	throughout the United States, and using it as fue
13	or input for advanced nuclear reactors, existing reac-
14	tors, or commercial applications;
15	(B) to compare such practicability, potentia
16	benefits, costs, and risks of recycling spent nuclear
17	fuel with the practicability, potential benefits, costs
18	and risks of the once-through fuel cycle, including
19	temporary and permanent storage requirements; and
20	(C) to analyze the practicability, potential bene-
21	fits, costs, and risks of aqueous (such as PUREX
22	and the derivatives of PUREX) recycling processes
23	with the practicability, potential benefits, costs, and
24	risk of non-aqueous (such as pyro-electrochemistry)
25	recycling processes;

1	(3) to analyze the technical and economic feasi-
2	bility of utilizing nuclear waste processing to extract
3	certain isotopes needed for domestic and inter-
4	national use, including medical, industrial, space-
5	based power source, and advanced-battery applica-
6	tions;
7	(4) to analyze the practicability, potential bene-
8	fits, costs, risks, and potential approaches for cou-
9	pling or collocating recycling facilities with other
10	pertinent facilities, such as advanced nuclear reac-
11	tors (that can use the recycled fuel), interim storage,
12	and fuel-fabrication facilities, including through—
13	(A) relevant analyses, such as capital and
14	operating cost estimates, public-private partner-
15	ships to encourage investment, infrastructure
16	requirements, timeline to full-scale commercial
17	deployment, and distinguishing characteristics
18	or requirements of such facilities;
19	(B) input from interested private tech-
20	nology developers and relevant assumptions re-
21	garding cost; and
22	(C) comparison with the practicability, po-
23	tential benefits, costs, and risks of the once-
24	through fuel cycle, including temporary and
25	permanent storage requirements;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

ELT25921 KK3 S.L.C.

(5) to identify parties, including individuals, communities, businesses, and local and Tribal governments, that are impacted economically, through health, safety, or environmental risks, by the current practice of indefinite temporary storage of spent nuclear fuel, and assess potential risks and benefits for those parties should spent nuclear fuel be removed from their sites for the purposes of nuclear waste recycling; (6) to assess different approaches for siting and sizing nuclear waste recycling facilities, including a centralized national facility, regional facilities, onsite facilities where spent nuclear fuel is currently stored, and on-site facilities where newly recycled fuel can be used by an on-site reactor, and recommend one or more approaches that consider environmental, transportation, infrastructure, capital, and other risks; (7) to identify tracking and accountability methods for new recycled fuel and radioactive waste streams for byproducts of the recycling process; (8)(A) to identify any regulatory gaps related to nuclear waste management and recycling, including accuracy and consistency of relevant definitions for

radioactive waste (including "high-level radioactive

1	waste", "spent nuclear fuel", "low-level radioactive
2	waste", "reprocessing", "recycling", and "vitrifica-
3	tion") and classifications of radioactive waste that
4	exist in Federal law on the date of enactment of this
5	Act;
6	(B) to compare such definitions to those used
7	by other nations that manage radioactive waste; and
8	(C) to make recommendations for modernizing
9	such definitions; and
10	(9) to evaluate—
11	(A) potential Federal and State-level policy
12	changes to support development and deploy-
13	ment of recycling and waste-utilizing reactor
14	technologies; and
15	(B) impacts of spent nuclear fuel recycling
16	on requirements for domestic nuclear waste
17	storage.
18	(c) Report.—Not later than 1 year after the date
19	of enactment of this Act, the Secretary, acting through
20	the Assistant Secretary for Nuclear Energy, shall submit
21	to the Committee on Energy and Natural Resources of
22	the Senate, the Committee on Energy and Commerce of
23	the House of Representatives, the Committee on Science,
24	Space, and Technology of the House of Representatives,
25	and the Committee on Natural Resources of the House

1	of Representatives, a report that complies with each of the
2	following:
3	(1) Describes the results of the study carried
4	out under subsection (b).
5	(2) Is released to the public.
6	(3) Totals not more than 120 pages (excluding
7	Front Matter, References, and Appendices) written
8	and formatted to facilitate review by a nonspecialist
9	readership, including the following sections:
10	(A) A Front Matter section that includes a
11	cover page with identifying information, tables
12	of contents, figures, and tables.
13	(B) An Executive Summary section.
14	(C) An Introductory section that includes a
15	historical overview that also explains why recy-
16	cling is not performed in the United States
17	today, such as economic, political, or techno-
18	logical obstacles.
19	(D) Results and Findings sections that
20	summarize the results and findings of the study
21	carried out under subsection (b).
22	(E) A Key Remaining Challenges and Bar-
23	riers section that identifies key technical and
24	nontechnical (such as economic) challenges and
25	barriers that need to be addressed to enable

1	scale-up and commercial adoption of spent nu-
2	clear fuel recycling, with preference given to se-
3	cure, proliferation resistant, environmentally
4	safe, and economical recycling methods.
5	(F) A Policy Recommendations section
6	that—
7	(i) lists policy recommendations to ad-
8	dress remaining technical and nontechnical
9	(such as economic) challenges and barriers
10	to enable scale-up and commercial adop-
11	tion of spent nuclear fuel recycling, includ-
12	ing with government support;
13	(ii) contrasts the potential benefits
14	and risks of each policy; and
15	(iii) compares benefits to current or
16	past policies.
17	(G) An Other section in which other rel-
18	evant information may be added.
19	(H) A References section.
20	(I) An Appendices section.