7-18 | 115TH CONGRESS | | |----------------|--| | 1st Session | | To authorize the programs of the National Aeronautics and Space Administration, and for other purposes. IN THE SENATE OF THE UNITED STATES Mr. Cruz (for himself, Mr. Nelson, Mr. Rubio, Mr. Peters, Mr. Thune, Mr. Udall, Mrs. Murray and Mr. Cornyn, introduced the following bill; which was read twice and referred to the Committee on ______ # A BILL To authorize the programs of the National Aeronautics and Space Administration, and for other purposes. - 1 Be it enacted by the Senate and House of Representa- - 2 tives of the United States of America in Congress assembled, - 3 SECTION 1. SHORT TITLE; TABLE OF CONTENTS. - 4 (a) SHORT TITLE.—This Act may be cited as the - 5 "National Aeronautics and Space Administration Transi- - 6 tion Authorization Act of 2017". - 7 (b) Table of Contents.—The table of contents of - 8 this Act is as follows: Sec. 1. Short title; table of contents. Sec. 2. Definitions. TITLE I—AUTHORIZATION OF APPROPRIATIONS Sec. 101. Fiscal year 2017. # TITLE II—SUSTAINING NATIONAL SPACE COMMITMENTS Sec. 201. Sense of Congress on sustaining national space commitments. Sec. 202. Findings. ### TITLE III—MAXIMIZING UTILIZATION OF THE ISS AND LOW-EARTH ORBIT Sec. 301. Operation of the ISS. Sec. 302. Transportation to ISS. Sec. 303. ISS transition plan. Sec. 304. Space communications. Sec. 305. Indemnification; NASA launch services and reentry services. # TITLE IV—ADVANCING HUMAN DEEP SPACE EXPLORATION ## Subtitle A—Human Space Flight and Exploration Goals and Objectives Sec. 411. Human space flight and exploration long-term goals. Sec. 412. Key objectives. Sec. 413. Vision for space exploration. Sec. 414. Stepping stone approach to exploration. Sec. 415. Update of exploration plan and programs. Sec. 416. Repeals. Sec. 417. Assured access to space. ### Subtitle B-Assuring Core Capabilities for Exploration Sec. 421. Space Launch System, Orion, and Exploration Ground Systems. #### Subtitle C-Journey to Mars Sec. 431. Findings on human space exploration. Sec. 432. Human exploration roadmap. Sec. 433. Advanced space suit capability. See. 434. Asteroid robotic redirect mission. Sec. 435. Mars 2033 report. #### Subtitle D-TREAT Astronauts Act Sec. 441. Short title. Sec. 442. Findings; sense of Congress. Sec. 443. Medical monitoring and research relating to human space flight. ### TITLE V—ADVANCING SPACE SCIENCE See. 501. Maintaining a balanced space science portfolio. Sec. 502. Planetary science. Sec. 503. James Webb Space Telescope. Sec. 504. Wide-Field Infrared Survey Telescope. Sec. 505. Mars 2020 rover. Sec. 506. Europa. Sec. 507. Congressional declaration of policy and purpose. Sec. 508. Extrasolar planet exploration strategy. Sec. 509. Astrobiology strategy. Sec. 510. Astrobiology public-private partnerships. Sec. 511. Near-earth objects. - See. 512. Near-Earth objects public-private partnerships. - Sec. 513. Assessment of science mission extensions. - Sec. 514. Stratospheric observatory for infrared astronomy. - Sec. 515. Radioisotope power systems. - Sec. 516. Assessment of Mars architecture. - Sec. 517. Collaboration. #### TITLE VI—AERONAUTICS - Sec. 601. Sense of Congress on aeronautics. - Sec. 602. Transformative aeronauties research. - Sec. 603. Hypersonic research. - Sec. 604. Supersonic research. - Sec. 605. Rotoreraft research. ### TITLE VII—SPACE TECHNOLOGY - Sec. 701. Space technology infusion. - Sec. 702. Space technology program. #### TITLE VIII—MAXIMIZING EFFICIENCY # Subtitle A—Agency Information Technology and Cybersecurity - Sec. 811. Information technology governance. - Sec. 812. Information technology strategic plan. - Sec. 813. Cybersecurity. - Sec. 814. Security management of foreign national access. - Sec. 815. Cybersecurity of web applications. # Subtitle B-Collaboration Among Mission Directorates and Other Matters - Sec. 821. Collaboration among mission directorates. - Sec. 822. NASA launch capabilities collaboration. - Sec. 823. Detection and avoidance of counterfeit parts. - Sec. 824. Education and outreach. - Sec. 825. Leveraging commercial satellite servicing capabilities across mission directorates. - Sec. 826. Flight opportunities. - Sec. 827. Sense of Congress on small class launch missions. - Sec. 828. Baseline and cost controls. - Sec. 829. Commercial technology transfer program. - Sec. 830. Avoiding organizational conflicts of interest in major administration acquisition programs. - Sec. 831. Protection of Apollo landing sites. - Sec. 832. NASA lease of non-excess property. - Sec. 833. Termination liability. - Sec. 834. Independent reviews. - Sec. 835. NASA Advisory Council. - Sec. 836. Cost estimation. - Sec. 837. Facilities and infrastructure. - Sec. 838. Human space flight accident investigations. - Sec. 839. Orbital debris. - Sec. 840. Review of orbital debris removal concepts. - Sec. 841. Space Act Agreements. | 1 | SEC. 2. DEFINITIONS. | |----|--| | 2. | In this Λ et: | | 3 | (1) Administration.—The term "Administra- | | 4 | tion" means the National Aeronautics and Space | | 5 | Administration. | | 6 | (2) Administrator.—The term "Adminis- | | 7 | trator" means the Administrator of the National | | 8 | Aeronautics and Space Administration. | | 9 | (3) Appropriate committees of con- | | 10 | GRESS.—The term "appropriate committees of Con- | | 11 | gress" means— | | 12 | (A) the Committee on Commerce, Science, | | 13 | and Transportation of the Senate; and | | 14 | (B) the Committee on Science, Space, and | | 15 | Technology of the House of Representatives. | | 16 | (4) Cis-lunar space.—The term "cis-lunar | | 17 | space" means the region of space from the Earth | | 18 | out to and including the region around the surface | | 19 | of the Moon. | | 20 | (5) DEEP SPACE.—The term "deep space" | | 21 | means the region of space beyond low-Earth orbit, | | 22 | to include cis-lunar space. | | 23 | (6) GOVERNMENT ASTRONAUT.—The term | | 24 | "government astronaut" has the meaning given the | | 25 | term in section 50902 of title 51, United States | | | | 26 Code. | 1 | (7) ISS.—The term "ISS" means the Inter- | |----|---| | 2 | national Space Station. | | 3 | (8) ISS MANAGEMENT ENTITY.—The term | | 4 | "ISS management entity" means the organization | | 5 | with which the Administrator has a cooperative | | 6 | agreement under section 504(a) of the National Aer- | | 7 | onautics and Space Administration Authorization | | 8 | Act of 2010 (42 U.S.C. 18354(a)). | | 9 | (9) NASA.—The term "NASA" means the Na- | | 10 | tional Aeronautics and Space Administration. | | 11 | (10) Orion.—The term "Orion" means the | | 12 | multipurpose crew vehicle described under section | | 13 | 303 of the National Aeronautics and Space Adminis- | | 14 | tration Authorization Act of 2010 (42 U.S.C. | | 15 | 18323). | | 16 | (11) SPACE LAUNCH SYSTEM.—The term | | 17 | "Space Launch System" has the meaning given the | | 18 | term in section 3 of the National Aeronautics and | | 19 | Space Administration Authorization Act of 2010 (42) | | 20 | U.S.C. 18302). | | 21 | (12) United states government astro- | | 22 | NAUT.—The term "United States government astro- | | 23 | naut" has the meaning given the term "government | | 24 | astronaut" in section 50902 of title 51, United | | 1 | States Code, except it does not include an individual | |----|---| | 2 | who is an international partner astronaut. | | .3 | TITLE I—AUTHORIZATION OF | | 4 | APPROPRIATIONS | | 5 | SEC. 101. FISCAL YEAR 2017. | | 6 | There are authorized to be appropriated to NASA for | | 7 | fiscal year 2017, \$19,508,000,000, as follows: | | 8 | (1) For Exploration, \$4,330,000,000. | | 9 | (2) For Space Operations, \$5,023,000,000. | | 10 | (3) For Science, \$5,500,000,000. | | 11 | (4) For Aeronautics, \$640,000,000. | | 12 | (5) For Space Technology, \$686,000,000. | | 13 | (6) For Education, \$115,000,000. | | 14 | (7) For Safety, Security, and Mission Services, | | 15 | \$2,788,600,000. | | 16 | (8) For Construction and Environmental Com- | | 17 | pliance and Restoration, \$388,000,000. | | 18 | (9) For Inspector General, \$37,400,000. | | 19 | TITLE II—SUSTAINING NA- | | 20 | TIONAL SPACE COMMIT- | | 21 | MENTS | | 22 | SEC. 201. SENSE OF CONGRESS ON SUSTAINING NATIONAL | | 23 | SPACE COMMITMENTS. | | 24 | It is the sense of Congress that— | | 1 | (1) honoring current national space commit- | |----|--| | 2 | ments and building upon investments in space across | | 3 | successive Administrations demonstrates clear con- | | 4 | timuity of purpose by the United States, in collabora- | | 5 | tion with its international, academic, and industry | | 6 | partners, to extend humanity's reach into deep | | 7 | space, including cis-lunar space, the Moon, the sur- | | 8 | face and moons of Mars, and beyond; | | 9 | (2) NASA leaders can best leverage investments | | 10 | in the United States space program by continuing to | | 11 | develop a balanced portfolio for space exploration | | 12 | and space science, including continued development | | 13 | of the Space Launch System, Orion, Commercial | | 14 | Crew Program, space and planetary science missions | | 15 | such as the James Webb Space Telescope, Wide- | | 16 | Field Infrared Survey Telescope, and Europa mis- | | 17 | sion, and ongoing operations of the ISS and Com- | | 18 | mercial Resupply Services Program; | | 19 | (3) a national, government-led space program | | 20 | that builds on current science and exploration pro- | | 21 | grams, advances human knowledge and capabilities, | | 22 | and opens the frontier beyond Earth for ourselves, | | 23 | commercial enterprise, and science, and with our | international partners, is of critical importance to 24 | 1 | our national destiny and to a future guided by | |----
--| | 2 | United States values and freedoms; | | 3 | (4) continuity of purpose and effective execu- | | 4 | tion of core NASA programs are essential for effi- | | 5 | cient use of resources in pursuit of timely and tan- | | 6 | gible accomplishments; | | 7 | (5) NASA could improve its efficiency and ef- | | 8 | fectiveness by working with industry to streamline | | 9 | existing programs and requirements, procurement | | 10 | practices, institutional footprint, and bureaucracy | | 11 | while preserving effective program oversight, ac- | | 12 | countability, and safety; | | 13 | (6) it is imperative that the United States | | 14 | maintain and enhance its leadership in space explo- | | 15 | ration and space science, and continue to expand | | 16 | freedom and economic opportunities in space for all | | 17 | Americans that are consistent with the Constitution | | 18 | of the United States; and | | 19 | (7) NASA should be a multi-mission space | | 20 | agency, and should have a balanced and robust set | | 21 | of core missions in space science, space technology, | | 22 | aeronautics, human space flight and exploration, and | | 23 | education. | | 24 | SEC. 202. FINDINGS. | | 25 | Congress makes the following findings: | | 1 | (1) Returns on the Nation's investments in | |----|---| | 2 | science, technology, and exploration accrue over dec- | | 3 | ades-long timeframes, and a disruption of such in- | | 4 | vestments could prevent returns from being fully re- | | 5 | alized. | | 6 | (2) Past challenges to the continuity of such in- | | 7 | vestments, particularly threats regarding the can- | | 8 | cellation of authorized programs with bipartisan and | | 9 | bicameral support, have disrupted completion of | | 10 | major space systems thereby— | | 11 | (A) impeding planning and pursuit of na- | | 12 | tional objectives in space science and human | | 13 | space exploration; | | 14 | (B) placing such investments in space | | 15 | science and space exploration at risk; and | | 16 | (C) degrading the aerospace industrial | | 17 | base. | | 18 | (3) The National Aeronautics and Space Ad- | | 19 | ministration Authorization Act of 2005 (Public Law | | 20 | 109–155; 119 Stat. 2895), National Aeronautics | | 21 | and Space Administration Authorization Act of 2008 | | 22 | (Public Law 110-422; 122 Stat. 4779), and Na- | | 23 | tional Aeronautics and Space Administration Au- | | 24 | thorization Act of 2010 (42 U.S.C. 18301 et seq.) | | 25 | reflect a broad, bipartisan agreement on the path | | 1 | forward for NASA's core missions in science, space | |----|---| | 2 | technology, aeronautics, human space flight and ex- | | 3 | ploration, and education, that serves as the founda- | | 4 | tion for the policy updates by this Act. | | 5 | (4) Sufficient investment and maximum utiliza- | | 6 | tion of the ISS and ISS National Laboratory with | | 7 | our international and industry partners is— | | 8 | (A) consistent with the goals and objectives | | 9 | of the United States space program; and | | 10 | (B) imperative to continuing United States | | 11 | global leadership in human space exploration, | | 12 | science, research, technology development, and | | 13 | education opportunities that contribute to devel- | | 14 | opment of the next generation of American sci- | | 15 | entists, engineers, and leaders, and to creating | | 16 | the opportunity for economic development of | | 17 | low-Earth orbit. | | 18 | (5) NASA has made measurable progress in the | | 19 | development and testing of the Space Launch Sys- | | 20 | tem and Orion exploration systems with the near- | | 21 | term objectives of the initial integrated test flight | | 22 | and launch in 2018, a human mission in 2021, and | | 23 | continued missions with an annual cadence in cis- | | 24 | lunar space and eventually to the surface of Mars. | | 1 | (6) The Commercial Crew Program has made | |----|---| | 2 | measurable progress toward reestablishing the capa- | | 3 | bility to launch United States government astro- | | 4 | nauts from United States soil into low-Earth orbit | | 5 | by the end of 2018. | | 6 | (7) The Aerospace Safety Advisory Panel, in its | | 7 | 2015 Annual Report, urged continuity of purpose | | 8 | noting concerns over the potential for cost overruns | | 9 | and schedule slips that could accompany significant | | 10 | changes to core NASA programs. | | 11 | TITLE III—MAXIMIZING UTILIZA- | | 12 | TION OF THE ISS AND LOW- | | 13 | EARTH ORBIT | | 14 | SEC. 301. OPERATION OF THE ISS. | | 15 | (a) Sense of Congress.—It is the sense of Con- | | 16 | gress that— | | 17 | (1) after 15 years of continuous human pres- | | 18 | ence in low-Earth orbit, the ISS continues to over- | | 19 | come challenges and operate safely; | | 20 | (2) the ISS is a unique testbed for future space | | 21 | exploration systems development, including long-du- | | 22 | ration space travel; | | 23 | (3) the expansion of partnerships, scientific re- | | 24 | search, and commercial applications of the ISS is es- | | 25 | sential to ensuring the greatest return on invest- | | 1 | ments made by the United States and its inter- | |----|--| | 2 | national space partners in the development, assem- | | 3 | bly, and operations of that unique facility; | | 4 | (4) utilization of the ISS will sustain United | | 5 | States leadership and progress in human space ex- | | 6 | ploration by— | | 7 | (A) facilitating the commercialization and | | 8 | economic development of low-Earth orbit; | | 9 | (B) serving as a testbed for technologies | | 10 | and a platform for scientific research and devel- | | 11 | opment; and | | 12 | (C) serving as an orbital facility enabling | | 13 | research upon— | | 14 | (i) the health, well-being, and per- | | 15 | formance of humans in space; and | | 16 | (ii) the development of in-space sys- | | 17 | tems enabling human space exploration be- | | 18 | yond low-Earth orbit; and | | 19 | (5) the ISS provides a platform for funda- | | 20 | mental, microgravity, discovery-based space life and | | 21 | physical sciences research that is critical for ena- | | 22 | bling space exploration, protecting humans in space, | | 23 | increasing pathways for commercial space develop- | | 24 | ment that depend on advances in basic research, and | | 1 contributes to advancing science, technology, engi- | |---| | 2 neering, and mathematics research. | | 3 (b) Objectives.—The primary objectives of the ISS | | 4 program shall be— | | 5 (1) to achieve the long term goal and objectives | | 6 under section 202 of the National Aeronautics and | | 7 Space Administration Authorization Act of 2010 (42 | | 8 U.S.C. 18312); and | | 9 (2) to pursue a research program that advances | | 10 knowledge and provides other benefits to the Nation. | | 11 (c) CONTINUATION OF THE ISS.—Section 501 of the | | 12 National Aeronautics and Space Administration Author- | | 13 ization Act of 2010 (42 U.S.C. 18351) is amended to read | | 14 as follows: | | 15 "SEC. 501. CONTINUATION OF THE INTERNATIONAL SPACE | | 16 STATION. | | 17 "(a) POLICY OF THE UNITED STATES.—It shall be | | 18 the policy of the United States, in consultation with its | | 19 international partners in the ISS program, to support full | | 20 and complete utilization of the ISS through at least 2024. | | 21 "(b) NASA ACTION.—In furtherance of the policy set | | 22 forth in subsection (a), NASA shall— | | 23 "(1) pursue international, commercial, and | | 24 intragovernmental means to maximize ISS logistics | | 25 supply, maintenance, and operational capabilities, | | 1 | reduce risks to ISS systems sustainability, and offset | |----|--| | 2 | and minimize United States operations costs relating | | 3 | to the ISS; | | 4 | "(2) utilize, to the extent practicable, the ISS | | 5 | for the development of capabilities and technologies | | 6 | needed for the future of human space exploration | | 7 | beyond low-Earth orbit; and | | 8 | "(3) utilize, if practical and cost effective, the | | 9 | ISS for Science Mission Directorate missions in low- | | 10 | Earth orbit.". | | 11 | SEC. 302. TRANSPORTATION TO ISS. | | 12 | (a) FINDINGS.—Congress finds that reliance on for- | | 13 | eign carriers for United States crew transfer is unaccept- | | 14 | able, and the Nation's human space flight program must | | 15 | acquire the capability to launch United States government | | 16 | astronauts on vehicles using United States rockets from | | 17 | United States soil as soon as is safe, reliable, and afford- | | 18 | able to do so. | | 19 | (b) Sense of Congress on Commercial Crew | | 20 | PROGRAM AND COMMERCIAL RESUPPLY SERVICES PRO- | | 21 | GRAM.—It is the sense of Congress that— | | 22 | (1) once developed and certified to meet the Ad- | | 23 | ministration's safety and reliability requirements, | | 24 | United States commercially provided crew transpor- | | 25 | tation systems can serve as the primary means of | | 1 | transporting United States government astronauts | |----|--| | 2 | and international partner astronauts to and from | | 3 | the ISS and serving as ISS crew rescue vehicles; | | 4 | (2) previous budgetary assumptions used by the | | 5 | Administration in its planning for the Commercial | | 6 | Crew Program assumed significantly higher funding | | 7 | levels than were authorized and appropriated by | | 8 | Congress; | | 9 | (3) credibility in the Administration's budgetary | | 10 | estimates for the Commercial Crew Program can be | | 11 | enhanced by an independently developed cost esti- | | 12 | mate; | | 13 | (4) such
credibility in budgetary estimates is an | | 14 | important factor in understanding program risk; | | 15 | (5) United States access to low-Earth orbit is | | 16 | paramount to the continued success of the ISS and | | 17 | ISS National Laboratory; | | 18 | (6) a stable and successful Commercial Resup- | | 19 | ply Services Program and Commercial Crew Pro- | | 20 | gram are critical to ensuring timely provisioning of | | 21 | the ISS and to reestablishing the capability to | | 22 | launch United States government astronauts from | | 23 | United States soil into orbit, ending reliance upon | | 24 | Russian transport of United States government as- | | 25 | tronauts to the ISS which has not been possible | | 1 | since the retirement of the Space Shuttle program in | |----|---| | 2 | 2011; | | 3 | (7) NASA should build upon the success of the | | 4 | Commercial Orbital Transportation Services Pro- | | 5 | gram and Commercial Resupply Services Program | | 6 | that have allowed private sector companies to part- | | 7 | ner with NASA to deliver cargo and scientific experi- | | 8 | ments to the ISS since 2012; | | 9 | (8) the 21st Century Launch Complex Program | | 10 | has enabled significant modernization and infra- | | 11 | structure improvements at launch sites across the | | 12 | United States to support NASA's Commercial Re- | | 13 | supply Services Program and other civil and com- | | 14 | mercial space flight missions; and | | 15 | (9) the 21st Century Launch Complex Program | | 16 | should be continued in a manner that leverages | | 17 | State and private investments to achieve the goals of | | 18 | that program. | | 19 | (c) Reaffirmation.—Congress reaffirms— | | 20 | (1) its commitment to the use of a commercially | | 21 | developed, private sector launch and delivery system | | 22 | to the ISS for crew missions as expressed in the Na- | | 23 | tional Aeronautics and Space Administration Au- | | 24 | thorization Act of 2005 (Public Law 109–155; 119 | | 25 | Stat. 2895), the National Aeronautics and Space | | 1 | Administration Authorization Act of 2008 (Public | |----|--| | 2 | Law 110–422; 122 Stat. 4779), and the National | | 3 | Aeronautics and Space Administration Authorization | | 4 | Act of 2010 (42 U.S.C. 18301 et seq.); and | | 5 | (2) the requirement under section | | 6 | 50111(b)(1)(A) of title 51, United States Code, that | | 7 | the Administration shall make use of United States | | 8 | commercially provided ISS crew transfer and crew | | 9 | rescue services to the maximum extent practicable. | | 10 | (d) USE OF NON-UNITED STATES HUMAN SPACE | | 11 | FLIGHT TRANSPORTATION CAPABILITIES.—Section | | 12 | 201(a) of the National Aeronautics and Space Administra- | | 13 | tion Authorization Act of 2010 (42 U.S.C. 18311(a)) is | | 14 | amended to read as follows: | | 15 | "(a) USE OF NON-UNITED STATES HUMAN SPACE | | 16 | FLIGHT TRANSPORTATION SERVICES.— | | 17 | "(1) In General.—The Federal Government | | 18 | may not acquire human space flight transportation | | 19 | services from a foreign entity unless— | | 20 | "(A) no United States Government-oper- | | 21 | ated human space flight capability is available; | | 22 | "(B) no United States commercial provider | | 23 | 9 11d | | 24 | were the amplified forgion entity | | 25 | way to managed In this subsection. | | 1 | "(A) COMMERCIAL PROVIDER.—The term | |----|--| | 2 | 'commercial provider' means any person pro- | | 3 | viding human space flight transportation serv- | | 4 | ices, primary control of which is held by persons | | 5 | other than the Federal Government, a State or | | 6 | local government, or a foreign government. | | 7 | "(B) QUALIFIED FOREIGN ENTITY.—The | | 8 | term 'qualified foreign entity' means a foreign | | 9 | entity that is in compliance with all applicable | | 10 | safety standards and is not prohibited from | | 11 | providing space transportation services under | | 12 | other law. | | 13 | "(C) UNITED STATES COMMERCIAL PRO- | | 14 | VIDER.—The term 'United States commercial | | 15 | provider' means a commercial provider, orga- | | 16 | nized under the laws of the United States or of | | 17 | a State, that is more than 50 percent owned by | | 18 | United States nationals. | | 19 | "(3) ARRANGEMENTS WITH FOREIGN ENTI- | | 20 | TIES.—Nothing in this subsection shall prevent the | | 21 | Administrator from negotiating or entering into | | 22 | human space flight transportation arrangements | | 23 | with foreign entities to ensure safety of flight and | | 24 | continued ISS operations.". | | 25 | (e) Commercial Crew Program.— | | 1 | (1) Objective.—The objective of the Commer- | |----|--| | 2 | cial Crew Program shall be to assist in the develop- | | 3 | ment and certification of commercially provided | | 4 | transportation that— | | 5 | (A) can carry United States government | | 6 | astronauts safely, reliably, and affordably to | | 7 | and from the ISS; | | 8 | (B) can serve as a crew rescue vehicle; and | | 9 | (C) can accomplish subparagraphs (A) and | | 10 | (B) as soon as practicable. | | 11 | (2) Primary consideration.—The objective | | 12 | described in paragraph (1) shall be the primary con- | | 13 | sideration in the acquisition strategy for the Com- | | 14 | mercial Crew Program. | | 15 | (3) Safety.— | | 16 | (A) In GENERAL.—The Administrator | | 17 | shall protect the safety of government astro- | | 18 | nauts by ensuring that each commercially pro- | | 19 | vided transportation system under this sub- | | 20 | section meets all applicable human rating re- | | 21 | quirements in accordance with section | | 22 | 403(b)(1) of the National Aeronautics and | | 23 | Space Administration Authorization Act of | | 24 | 2010 (42 U.S.C. 18342(b)(1)). | | 1 | (B) LESSONS LEARNED.—Consistent with | |----|--| | 2 | the findings and recommendations of the Co- | | 3 | lumbia Accident Investigation Board, the Ad- | | 4 | ministration shall ensure that safety and the | | 5 | minimization of the probability of loss of crew | | 6 | are the critical priorities of the Commercial | | 7 | Crew Program. | | 8 | (4) Cost minimization.—The Administrator | | 9 | shall strive through the competitive selection process | | 10 | to minimize the life cycle cost to the Administration | | 11 | through the planned period of commercially provided | | 12 | crew transportation services. | | 13 | (f) COMMERCIAL CARGO PROGRAM.—Section 401 of | | 14 | the National Aeronautics and Space Administration Au- | | 15 | thorization Act of 2010 (42 U.S.C. 18341) is amended | | 16 | by striking "Commercial Orbital Transportation Services" | | 17 | and inserting "Commercial Resupply Services". | | 18 | (g) COMPETITION.—It is the policy of the United | | 19 | States that, to foster the competitive development, oper- | | 20 | ation, improvement, and commercial availability of space | | 21 | transportation services, and to minimize the life cycle cost | | 22 | to the Administration, the Administrator shall procure | | 23 | services for Federal Government access to and return from | | 24 | the ISS, whenever practicable, via fair and open competi- | | 25 | tion for well-defined, milestone-based, Federal Acquisition | | 1 | Regulation-based contracts under section 201(a) of the | |----|--| | 2 | National Aeronautics and Space Administration Author- | | 3 | ization Act of 2010 (42 U.S.C. 18311(a)). | | 4 | (h) Transparency.— | | 5 | (1) Sense of congress.—It is the sense of | | 6 | Congress that cost transparency and schedule trans- | | 7 | parency aid in effective program management and | | 8 | risk assessment. | | 9 | (2) In General.—The Administrator shall, to | | 10 | the greatest extent practicable and in a manner that | | 11 | does not add costs or schedule delays to the pro- | | 12 | gram, ensure all Commercial Crew Program and | | 13 | Commercial Resupply Services Program providers | | 14 | provide evidence-based support for their costs and | | 15 | schedules. | | 16 | (i) ISS CARGO RESUPPLY SERVICES LESSONS | | 17 | LEARNED.—Not later than 120 days after the date of en- | | 18 | actment of this Act, the Administrator shall submit to the | | 19 | appropriate committees of Congress a report that— | | 20 | (1) identifies the lessons learned to date from | | 21 | previous and existing Commercial Resupply Services | | 22 | eontracts; | | 23 | (2) indicates whether changes are needed to the | | 24 | | | 25 | manages similar services prior to the issuance of fu- | | 1 | ture Commercial Resupply Services procurement op- | |----|---| | 2 | portunities; and | | 3 | (3) identifies any lessons learned from the Com- | | 4 | mercial Resupply Services contracts that should be | | 5 | applied to the procurement and management of com- | | 6 | mercially provided crew transfer services to and | | 7 | from the ISS or to other future procurements. | | 8 | SEC. 303. ISS TRANSITION PLAN. | | 9 | (a) FINDINGS.—Congress finds that— | | 10 | (1) NASA has been both the primary supplier | | 11 | and consumer of human space flight capabilities and | | 12 | services of the ISS and in low-Earth orbit; and | | 13 | (2) according to the National Research Council | | 14 | report "Pathways to Exploration: Rationales and | | 15 | Approaches for a U.S. Program of Human Space | | 16 | Exploration" extending ISS beyond 2020 to 2024 or | | 17 | 2028 will have significant negative impacts on the | | 18 | schedule of crewed missions to Mars, without signifi- | | 19 | cant increases in funding. | | 20 | (b) Sense of Congress.—It is the sense of Con- | | 21 | gress that— | | ? | (1) an orderly transition for United States | | | human
space flight activities in low-Earth orbit from | | | the current regime, that relies heavily on NASA | | | sponsorship, to a regime where NASA is one of | | 1 | many customers of a low-Earth orbit commercial | |----|---| | 2 | human space flight enterprise may be necessary; and | | 3 | (2) decisions about the long-term future of the | | 4 | ISS impact the ability to conduct future deep space | | 5 | exploration activities, and that such decisions re- | | 6 | garding the ISS should be considered in the context | | 7 | of the human exploration roadmap under section | | 8 | 432 of this Act. | | 9 | (c) Reports.—Section 50111 of title 51, United | | 10 | States Code, is amended by adding at the end the fol- | | 11 | lowing: | | 12 | "(e) ISS Transition Plan.— | | 13 | "(1) In General.—The Administrator, in co- | | 14 | ordination with the ISS management entity (as de- | | 15 | fined in section 2 of the National Aeronautics and | | 16 | Space Administration Transition Authorization Act | | 17 | of 2017), ISS partners, the scientific user commu- | | 18 | nity, and the commercial space sector, shall develop | | 19 | a plan to transition in a step-wise approach from the | | 20 | current regime that relies heavily on NASA sponsor- | | 21 | ship to a regime where NASA could be one of many | | 22 | customers of a low-Earth orbit non-governmental | | 23 | human space flight enterprise. | | 24 | "(2) Reports.—Not later than December 1, | | 25 | 2017, and biennially thereafter until 2023, the Ad- | | 1 | ministrator shall submit to the Committee on Com- | |----|--| | 2 | merce, Science, and Transportation of the Senate | | 3 | and the Committee on Science, Space, and Tech- | | 4 | nology of the House of Representatives a report that | | 5 | includes— | | 6 | "(A) a description of the progress in | | 7 | achieving the Administration's deep space | | 8 | human exploration objectives on ISS and pros- | | 9 | pects for accomplishing future mission require- | | 10 | ments, space exploration objectives, and other | | 11 | research objectives on future commercially sup- | | 12 | plied low-Earth orbit platforms or migration of | | 13 | those objectives to eis-lunar space; | | 14 | "(B) the steps NASA is taking and will | | 15 | take, including demonstrations that could be | | 16 | conducted on the ISS, to stimulate and facili- | | 17 | tate commercial demand and supply of products | | 18 | and services in low-Earth orbit; | | 19 | "(C) an identification of barriers pre- | | 20 | venting the commercialization of low-Earth | | 21 | orbit, including issues relating to policy, regula- | | 22 | tions, commercial intellectual property, data, | | 23 | and confidentiality, that could inhibit the use of | | 24 | the ISS as a commercial incubator; | | 1 | "(D) the criteria for defining the ISS as a | |----|---| | 2 | research success; | | 3 | "(E) the criteria used to determine wheth- | | 4 | er the ISS is meeting the objective under sec- | | 5 | tion 301(b)(2) of the National Aeronautics and | | 6 | Space Administration Transition Authorization | | 7 | $\Lambda \mathrm{ct} \mathrm{of} 2017;$ | | 8 | "(F) an assessment of whether the criteria | | 9 | under subparagraphs (D) and (E) are con- | | 10 | sistent with the research areas defined in, and | | 11 | recommendations and schedules under, the cur- | | 12 | rent National Academies of Sciences, Engineer- | | 13 | ing, and Medicine Decadal Survey on Biological | | 14 | and Physical Sciences in Space; | | 15 | "(G) any necessary contributions that ISS | | 16 | extension would make to enabling execution of | | 17 | the human exploration roadmap under section | | 18 | 432 of the National Aeronautics and Space Ad- | | 19 | ministration Transition Authorization Act of | | 20 | 2017; | | 21 | "(H) the cost estimates for operating the | | 22 | ISS to achieve the criteria required under sub- | | 23 | paragraphs (D) and (E) and the contributions | | 24 | identified under subparagraph (G); | | 1 | "(I) the cost estimates for extending oper- | |----|---| | 2 | ations of the ISS to 2024, 2028, and 2030; | | 3 | "(J) an evaluation of the feasible and pre- | | 4 | ferred service life of the ISS beyond the period | | 5 | described in section 503 of the National Λ ero- | | 6 | nautics and Space Administration Authorization | | 7 | Act of 2010 (42 U.S.C. 18353), through at | | 8 | least 2028, as a unique scientific, commercial, | | 9 | and space exploration-related facility, includ- | | 10 | ing— | | 11 | "(i) a general discussion of inter- | | 12 | national partner capabilities and prospects | | 13 | for extending the partnership; | | 14 | "(ii) the cost associated with extend- | | 15 | ing the service life; | | 16 | "(iii) an assessment on the technical | | 17 | limiting factors of the service life of the | | 18 | ISS, including a list of critical components | | 19 | and their expected service life and avail- | | 20 | ability; and | | 21 | "(iv) such other information as may | | 22 | be necessary to fully describe the justifica- | | 23 | tion for and feasibility of extending the | | 24 | service life of the ISS, including the poten- | | 25 | tial scientific or technological benefits to | | 1 | the Federal Government, public, or to aca- | |----|--| | 2 | demic or commercial entities; | | 3 | "(K) an identification of the necessary ac- | | 4 | tions and an estimate of the costs to deorbit the | | 5 | ISS once it has reached the end of its service | | 6 | life; | | 7 | "(L) the impact on deep space exploration | | 8 | capabilities, including a crewed mission to Mars | | 9 | in the 2030s, if the preferred service life of the | | 10 | ISS is extended beyond 2024 and NASA main- | | 11 | tains a flat budget profile; and | | 12 | "(M) an evaluation of the functions, roles, | | 13 | and responsibilities for management and oper- | | 14 | ation of the ISS and a determination of— | | 15 | "(i) those functions, roles, and re- | | 16 | sponsibilities the Federal Government | | 17 | should retain during the lifecycle of the | | 18 | ISS; | | 19 | "(ii) those functions, roles, and re- | | 20 | sponsibilities that could be transferred to | | 21 | the commercial space sector; | | 22 | "(iii) the metrics that would indicate | | 23 | the commercial space sector's readiness | | 24 | and ability to assume the functions, roles, | | 1 | and responsibilities described in clause (ii); | |----|---| | 2 | and . | | 3 | "(iv) any necessary changes to any | | 4 | agreements or other documents and the | | 5 | law to enable the activities described in | | 6 | subparagraphs (A) and (B). | | 7 | "(3) Demonstrations.—If additional Govern- | | 8 | ment crew, power, and transportation resources are | | 9 | available after meeting the Administration's require- | | 10 | ments for ISS activities defined in the human explo- | | 11 | ration roadmap and related research, demonstrations | | 12 | identified under paragraph (2) may— | | 13 | " (Λ) test the capabilities needed to meet | | 14 | future mission requirements, space exploration | | 15 | objectives, and other research objectives de- | | 16 | scribed in paragraph (2)(A); and | | 17 | "(B) demonstrate or test capabilities, in- | | 18 | cluding commercial modules or deep space habi- | | 19 | tats, Environmental Control and Life Support | | 20 | Systems, orbital satellite assembly, exploration | | 21 | space suits, a node that enables a wide variety | | 22 | of activity, including multiple commercial mod- | | 23 | ules and airlocks, additional docking or berth- | | 24 | ing ports for commercial crew and cargo, oppor- | | 25 | tunities for the commercial space sector to cost | | 1 | share for transportation and other services on | |----|---| | 2 | the ISS, other commercial activities, or services | | 3 | obtained through alternate acquisition ap- | | 4 | proaches.". | | 5 | SEC. 304. SPACE COMMUNICATIONS. | | 6 | (a) PLAN.—The Administrator shall develop a plan, | | 7 | in consultation with relevant Federal agencies, to meet the | | 8 | Administration's projected space communication and navi- | | 9 | gation needs for low-Earth orbit and deep space oper- | | 10 | ations in the 20-year period following the date of enact- | | 11 | ment of this Δ ct. | | 12 | (b) CONTENTS.—The plan shall include— | | 13 | (1) the lifecycle cost estimates and a 5-year | | 14 | funding profile; | | 15 | (2) the performance capabilities required to | | 16 | meet the Administration's projected space commu- | | 17 | nication and navigation needs; | | 18 | (3) the measures the Administration will take | | 19 | to sustain the existing space communications and | | 20 | navigation architecture; | | 21 | (4) an identification of the projected space com- | | 22 | munications and navigation network and infrastruc- | | 23 | ture needs; | | 1 | (5) a description of the necessary upgrades to | |----|---| | 2 | meet the needs identified in paragraph (4), includ- | | 3 | ing— | | 4 | (A) an estimate of the cost of the up- | | 5 | grades; | | 6 | (B) a schedule for implementing the up- | | 7 | grades; and | | 8 | (C) an assessment of whether and how any | | 9 | related missions will be impacted if resources | | 10 | are not secured at the level needed; | | 11 | (6) the cost estimates for the maintenance of | | 12 | existing space communications network capabilities | | 13 | necessary to meet the needs identified in paragraph | | 14 | (4); | | 15 | (7) the criteria for prioritizing resources for the | | 16 | upgrades described in paragraph (5) and the mainte- | | 17 | nance described in paragraph (6); |
 18 | (8) an estimate of any reimbursement amounts | | 19 | the Administration may receive from other Federal | | 20 | agencies; | | 21 | (9) an identification of the projected Tracking | | 22 | and Data Relay Satellite System needs in the 20- | | 23 | year period following the date of enactment of this | | 24 | Act, including in support of relevant Federal agen- | | 25 | cies, and cost and schedule estimates to maintain | | 1 | and upgrade the Tracking and Data Relay Satellite | |----|--| | 2 | System to meet the projected needs; | | 3 | (10) the measures the Administration is taking | | 4 | to meet space communications needs after all Track- | | 5 | ing and Data Relay Satellite System third-genera- | | 6 | tion communications satellites are operational; and | | 7 | (11) the measures the Administration is taking | | 8 | to mitigate threats to electromagnetic spectrum use. | | 9 | (e) SCHEDULE.—Not later than 1 year after the date | | 10 | of enactment of this Act, the Administrator shall submit | | 11 | the plan to the appropriate committees of Congress. | | 12 | SEC. 305. INDEMNIFICATION; NASA LAUNCH SERVICES AND | | 13 | REENTRY SERVICES. | | 14 | (a) IN GENERAL.—Subchapter III of chapter 201 of | | 15 | title 51, United States Code, is amended by adding at the | | 16 | end the following: | | 17 | "§ 20148. Indemnification; NASA launch services and | | 18 | reentry services | | 19 | "(a) In General.—Under such regulations in con- | | 20 | formity with this section as the Administrator shall pre- | | 21 | scribe taking into account the availability, cost, and terms | | 22 | of liability insurance, any contract between the Adminis- | | 23 | | | 24 | | | 25 | cluding reasonable expenses of litigation or settlement) by | | _ | |--| | 1 third parties for death, bodily injury, or loss of or damage | | 2 to property resulting from launch services and reentry | | 3 services carried out under the contract that the contract | | 4 defines as unusually hazardous or nuclear in nature, but | | 5 only to the extent the total amount of successful claims | | 6 related to the activities under the contract— | | 7 "(1) is more than the amount of insurance or | | 8 demonstration of financial responsibility described in | | 9 subsection (e)(3); and | | 10 "(2) is not more than the amount specified in | | 11 section 50915(a)(1)(B). | | 12 "(b) Terms of Indemnification.—A contract | | 13 made under subsection (a) that provides indemnification | | 14 shall provide for— | | 15 "(1) notice to the United States of any claim or | | suit against the provider for death, bodily injury, or | | loss of or damage to property; and | | 18 "(2) control of or assistance in the defense by | | the United States, at its election, of that claim or | | 20 suit and approval of any settlement. | | 21 "(e) Liability Insurance of the Provider.— | | "(1) In General.—The provider under sub- | | section (a) shall obtain liability insurance or dem- | | onstrate financial responsibility in amounts to com- | | 1 | pensate for the maximum probable loss from claims | |----|--| | 2 | by— | | 3 | "(Λ) a third party for death, bodily injury, | | 4 | or property damage or loss resulting from a | | 5 | launch service or reentry service carried out | | 6 | under the contract; and | | 7 | "(B) the United States Government for | | 8 | damage or loss to Government property result- | | 9 | ing from a launch service or reentry service car- | | 10 | ried out under the contract. | | 11 | "(2) Maximum probable losses.— | | 12 | "(A) IN GENERAL.—The Administrator | | 13 | shall determine the maximum probable losses | | 14 | under subparagraphs (A) and (B) of paragraph | | 15 | (1) not later than 90 days after the date that | | 16 | the provider requests such a determination and | | 17 | submits all information the Administrator re- | | 18 | quires. | | 19 | "(B) REVISIONS.—The Administrator may | | 20 | revise a determination under subparagraph (Λ) | | 21 | of this paragraph if the Administrator deter- | | 22 | mines the revision is warranted based on new | | 23 | information. | | 24 | "(3) Amount of insurance.—For the total | | 25 | claims related to one launch or reentry, a provider | | 1 | shall not be required to obtain insurance or dem- | |-----|---| | 2 | onstrate financial responsibility of more than— | | 3 | ``(A)(i) \$500,000,000 under paragraph | | 4 | $(1)(\Lambda)$; or | | 5 | "(ii) \$100,000,000 under paragraph | | 6 | (1)(B); or | | 7 | "(B) the maximum liability insurance | | 8 | available on the world market at reasonable | | 9 | cost. | | 10 | "(4) COVERAGE.—An insurance policy or dem- | | 11 | onstration of financial responsibility under this sub- | | 12 | section shall protect the following, to the extent of | | 13 | their potential liability for involvement in launch | | 14 | services or reentry services: | | 15 | "(A) The Government. | | 16 | "(B) Personnel of the Government. | | 17 | "(C) Related entities of the Government. | | 18 | "(D) Related entities of the provider. | | 19. | "(E) Government astronauts. | | 20 | "(d) No Indemnification Without Cross-waiv- | | 21 | ER.—Notwithstanding subsection (a), the Administrator | | 22 | may not indemnify a provider under this section unless | | 23 | there is a cross-waiver between the Λ dministration and the | | 24 | provider as described in subsection (e). | | 25 | "(e) Cross-Waivers.— | | 1 | "(1) In General.—The Administrator, on be- | |----|--| | 2 | half of the United States and its departments, agen- | | 3 | cies, and instrumentalities, shall reciprocally waive | | 4 | claims with a provider under which each party to the | | 5 | waiver agrees to be responsible, and agrees to ensure | | 6 | that its related entities are responsible, for damage | | 7 | or loss to its property, or for losses resulting from | | 8 | any injury or death sustained by its employees or | | 9 | agents, as a result of activities arising out of the | | 10 | performance of the contract. | | 11 | "(2) Limitation.—The waiver made by the | | 12 | Government under paragraph (1) shall apply only to | | 13 | the extent that the claims are more than the amount | | 14 | of insurance or demonstration of financial responsi- | | 15 | bility required under subsection (e)(1)(B). | | 16 | "(f) WILLFUL MISCONDUCT.—Indemnification under | | 17 | subsection (a) may exclude claims resulting from the will- | | 18 | ful misconduct of the provider or its related entities. | | 19 | "(g) Certification of Just and Reasonable | | 20 | Amount.—No payment may be made under subsection | | 21 | (a) unless the Administrator or the Administrator's des- | | 22 | ignee certifies that the amount is just and reasonable. | | 23 | "(h) Раументв.— | | 24 | "(1) In general.—Upon the approval by the | | 25 | Administrator, payments under subsection (a) may | | 1 | be made from funds appropriated for such pay- | |----|---| | 2 | ments. | | 3 | "(2) LIMITATION.—The Administrator shall not | | 4 | approve payments under paragraph (1), except to | | 5 | the extent provided in an appropriation law or to the | | 6 | extent additional legislative authority is enacted pro- | | 7 | viding for such payments. | | 8 | "(3) ADDITIONAL APPROPRIATIONS.—If the | | 9 | Administrator requests additional appropriations to | | 10 | make payments under this subsection, then the re- | | 11 | quest for those appropriations shall be made in ac- | | 12 | cordance with the procedures established under sec- | | 13 | tion 50915. | | 14 | "(i) Rules of Construction.— | | 15 | "(1) IN GENERAL.—The authority to indemnify | | 16 | under this section shall not create any rights in | | 17 | third persons that would not otherwise exist by law. | | 18 | "(2) OTHER AUTHORITY.—Nothing in this sec- | | 19 | tion may be construed as prohibiting the Adminis- | | 20 | trator from indemnifying a provider or any other | | 21 | NASA contractor under other law, including under | | 22 | Public Law 85–804 (50 U.S.C. 1431 et seq.). | | 23 | "(3) ANTI-DEFICIENCY ACT.—Notwithstanding | | 24 | any other provision of this section— | | 1 | "(A) all obligations under this section are | |----|--| | 2 | subject to the availability of funds; and | | 3 | "(B) nothing in this section may be con- | | 4 | strued to require obligation or payment of | | 5 | funds in violation of sections 1341, 1342, 1349 | | 6 | through 1351, and 1511 through 1519 of title | | 7 | 31, United States Code (commonly referred to | | 8 | as the 'Anti-Deficiency Act'). | | 9 | "(j) Relationship to Other Laws.—The Admin- | | 10 | istrator may not provide indemnification under this sec- | | 11 | tion for an activity that requires a license or permit under | | 12 | chapter 509. | | 13 | "(k) DEFINITIONS.—In this section: | | 14 | "(1) GOVERNMENT ASTRONAUT.—The term | | 15 | 'government astronaut' has the meaning given the | | 16 | term in section 50902. | | 17 | "(2) LAUNCH SERVICES.—The term 'launch | | 18 | services' has the meaning given the term in section | | 19 | 50902. | | 20 | "(3) Provider.—The term 'provider' means a | | 21 | person that provides domestic launch services or do- | | 22 | mestic reentry services to the Government. | | 23 | "(4) REENTRY SERVICES.—The term 'reentry | | 24 | services' has the meaning given the term in section | | 25 | 50902. | | 1 | "(5) RELATED ENTITY.—The term 'related en | |----|---| | 2 | tity' means a contractor or subcontractor. | | 3 | "(6) THIRD PARTY.—The term 'third party | | 4 | | | 5 | "(A) the United States
Government; | | 6 | "(B) related entities of the Government in- | | 7 | volved in launch services or reentry services; | | 8 | "(C) a provider; | | 9 | "(D) related entities of the provider in- | | 10 | volved in launch services or reentry services; or | | 11 | "(E) a government astronaut.". | | 12 | (b) Conforming Amendment.—The table of con- | | 13 | tents for subchapter III of chapter 201 of title 51, United | | 14 | States Code, is amended by inserting after the item relat- | | 15 | ing to section 20147 the following: | | | "20148. Indemnification; NASA launch services and reentry services.". | | 16 | TITLE IV—ADVANCING HUMAN | | 17 | DEEP SPACE EXPLORATION | | 18 | Subtitle A-Human Space Flight | | 19 | and Exploration Goals and Ob- | | 20 | jectives | | 21 | SEC. 411. HUMAN SPACE FLIGHT AND EXPLORATION LONG- | | 22 | TERM GOALS. | | 23 | Section 202(a) of the National Aeronautics and | | 24 | Space Administration Authorization Act of 2010 (42 | | - | U.S.C. 18312(a)) is amended to read as follows: | | 1 "(a) Long-term Goals.—The long-term goals of | |--| | 1 "(a) LONG-TERM GOALS.—The long of NASA | | 2 the human space flight and exploration efforts of NASA | | 3 shall be— | | 4 "(1) to expand permanent human presence be- | | 5 youd low-Earth orbit and to do so, where practical, | | 6 in a manner involving international, academic, and | | 7 industry partners; | | 8 "(2) crewed missions and progress toward | | o achieving the goal in paragraph (1) to enable the po- | | tential for subsequent human exploration and the ex- | | tension of human presence throughout the solar sys- | | 1 | | ((a) to extend human | | 13 "(3) to enable a capture p | | presence, including potential human habitation on | | another celestial body and a thriving space economy | | in the 21st Century.". | | 17 SEC. 412. KEY OBJECTIVES. | | 18 Section 202(b) of the National Aeronautics and | | 19 Space Administration Authorization Act of 2010 (42 | | 20 U.S.C. 18312(b)) is amended— | | 21 (1) in paragraph (3), by striking "; and" and | | inserting a semicolon; | | 23 (2) in paragraph (4), by striking the period at | | the end and inserting "; and"; and | | 25 (3) by adding at the end the following: | | 1 "(5) to achieve human exploration of Mars and | |--| | 2 beyond through the prioritization of those tech- | | 3 nologies and capabilities best suited for such a mis- | | 4 sion in accordance with the stepping stone approach | | to exploration under section 70504 of title 51, | | 6 United States Code.". | | 7 SEC. 413. VISION FOR SPACE EXPLORATION. | | 8 Section 20302 of title 51, United States Code, is | | 9 amended— | | 10 (1) in subsection (a), by inserting "in cis-lunar | | space or" after "sustained human presence"; | | 12 (2) by amending subsection (b) to read as fol- | | lows: | | 14 "(b) FUTURE EXPLORATION OF MARS.—The Admin- | | 15 istrator shall manage human space flight programs, in- | | 16 cluding the Space Launch System and Orion, to enable | | 17 humans to explore Mars and other destinations by defin- | | 18 ing a series of sustainable steps and conducting mission | | 19 planning, research, and technology development on a time- | | 20 table that is technically and fiscally possible, consistent | | 21 with section 70504."; and | | 22 (3) by adding at the end the following: | | 23 "(c) Definitions.—In this section: | | 24 "(1) Orion.—The term 'Orion' means the mul- | | 25 tipurpose crew vehicle described under section 303 | | 1 | of the National Aeronautics and Space Administra- | |----|--| | 2 | tion Authorization Act of 2010 (42 U.S.C. 18323). | | 3 | "(2) Space Launch system.—The term | | 4 | 'Space Launch System' means has the meaning | | 5 | given the term in section 3 of the National Aero- | | 6 | nautics and Space Administration Authorization Act | | 7 | of 2010 (42 U.S.C. 18302).". | | 8 | SEC. 414. STEPPING STONE APPROACH TO EXPLORATION. | | 9 | Section 70504 of title 51, United States Code, is | | 10 | amended to read as follows: | | 11 | "§ 70504. Stepping stone approach to exploration | | 12 | "(a) In General.—The Administration— | | 13 | "(1) may conduct missions to intermediate des- | | 14 | tinations in sustainable steps in accordance with sec- | | 15 | tion 20302(b) of this title, and on a timetable deter- | | 16 | mined by the availability of funding, in order to | | 17 | achieve the objective of human exploration of Mars | | 18 | specified in section 202(b)(5) of the National Aero- | | 19 | nautics and Space Administration Authorization Act | | 20 | of 2010 (42 U.S.C. 18312(b)(5)); and | | 21 | "(2) shall incorporate any such missions into | | 22 | the human exploration roadmap under section 432 | | 23 | of the National Aeronautics and Space Administra- | | 24 | tion Transition Authorization Act of 2017 | - 1 "(b) Cost-effectiveness.—In order to maximize - 2 the cost-effectiveness of the long-term space exploration - 3 and utilization activities of the United States, the Admin- - 4 istrator shall take all necessary steps, including engaging - 5 international, academic, and industry partners, to ensure - 6 that activities in the Administration's human space explo- - 7 ration program balance how those activities might also - 8 help meet the requirements of future exploration and utili- - 9 zation activities leading to human habitation on the sur- - 10 face of Mars. - 11 "(c) Completion.—Within budgetary consider- - 12 ations, once an exploration-related project enters its devel- - 13 opment phase, the Administrator shall seek, to the max- - 14 imum extent practicable, to complete that project without - 15 undue delays. - 16 "(d) International Participation.—In order to - 17 achieve the goal of successfully conducting a crewed mis- - 18 sion to the surface of Mars, the President may invite the - 19 United States partners in the ISS program and other na- - 20 tions, as appropriate, to participate in an international ini- - 21 tiative under the leadership of the United States.". - 22 SEC. 415. UPDATE OF EXPLORATION PLAN AND PROGRAMS. - 23 Section 70502(2) of title 51, United States Code, is - 24 amended to read as follows: | 4 | (10) ' unlawant on amplanation pagagrah and | |----|---| | 1 | "(2) implement an exploration research and | | 2 | technology development program to enable human | | 3 | and robotic operations consistent with section | | 4 | 20302(b) of this title;". | | 5 | SEC. 416. REPEALS. | | 6 | (a) Space Shuttle Capability Assurance.—Sec- | | 7 | tion 203 of the National Aeronautics and Space Adminis- | | 8 | tration Authorization Act of 2010 (42 U.S.C. 18313) is | | 9 | amended— | | 10 | (1) by striking subsection (b); | | 11 | (2) in subsection (d), by striking "subsection | | 12 | (c)" and inserting "subsection (b)"; and | | 13 | (3) by redesignating subsections (c) and (d) as | | 14 | subsections (b) and (c), respectively. | | 15 | (b) Shuttle Pricing Policy for Commercial | | 16 | AND FOREIGN USERS.—Chapter 703 of title 51, United | | 17 | States Code, and the item relating to that chapter in the | | 18 | table of chapters for that title, are repealed. | | 19 | (c) Shuttle Privatization.—Section 50133 of | | 20 | title 51, United States Code, and the item relating to that | | 21 | section in the table of sections for chapter 501 of that | | 22 | title, are repealed. | | 23 | SEC. 417. ASSURED ACCESS TO SPACE. | | 24 | Section 70501 of title 51, United States Code, is | | 25 | amended | | 1 | (1) by amending subsection (a) to read as fol- | |----|---| | 2 | lows: | | 3 | "(a) Policy Statement.—In order to ensure con- | | 4 | tinuous United States participation and leadership in the | | 5 | exploration and utilization of space and as an essential | | 6 | instrument of national security, it is the policy of the | | 7 | United States to maintain an uninterrupted capability for | | 8 | human space flight and operations— | | 9 | "(1) in low-Earth orbit; and | | 10 | "(2) beyond low-Earth orbit once the capabili- | | 11 | ties described in section 421(f) of the National Aero- | | 12 | nautics and Space Administration Transition Au- | | 13 | thorization Act of 2017 become available."; and | | 14 | (2) in subsection (b), by striking "Committee | | 15 | on Science and Technology of the House of Rep- | | 16 | resentatives and the Committee on Commerce, | | 17 | Science, and Transportation of the Senate describing | | 18 | the progress being made toward developing the Crew | | 19 | Exploration Vehicle and the Crew Launch Vehicle" | | 20 | and inserting "Committee on Commerce, Science, | | 21 | and Transportation of the Senate and the Com- | | 22 | mittee on Science, Space, and Technology of the | | 23 | House of Representatives describing the progress | | 24 | being made toward developing the Space Launch | | 25 | System and Orion". | ## Subtitle B—Assuring Core 1 Capabilities for Exploration 2 3 SEC. 421. SPACE LAUNCH SYSTEM, ORION, AND EXPLO-4 RATION GROUND SYSTEMS. 5 (a) FINDINGS.—Congress makes the following find-6 ings: 7 (1) NASA has made steady progress in devel-8 oping and testing the Space Launch System and 9 Orion exploration systems with the successful Explo-10 ration Flight Test of Orion in December of 2014, 11 the final qualification test firing of the 5-segment 12 Space Launch System boosters in June 2016, and a 13 full thrust, full duration test firing of the RS-25 14 Space Launch System core stage engine in August 15 2016. 16 (2) Through the 21st Century Launch Complex 17 program and Exploration Ground Systems pro-18 grams, NASA has made significant progress in transforming exploration ground systems infrastruc-19 20 ture to meet NASA's mission requirements for the 21 Space Launch System and Orion and to
modernize 22 NASA's launch complexes to the benefit of the civil, 23 defense, and commercial space sectors. (b) Space Launch System.— 24 | 1 | (1) Sense of congress.—It is the sense of | |----|--| | 2 | Congress that use of the Space Launch System and | | 3 | Orion, with contributions from partnerships with the | | 4 | private sector, academia, and the international com- | | 5 | munity, is the most practical approach to reaching | | 6 | the Moon, Mars, and beyond. | | 7 | (2) Reaffirmation.—Congress reaffirms the | | 8 | policy and minimum capability requirements for the | | 9 | Space Launch System under section 302 of the Na- | | 10 | tional Aeronautics and Space Administration Au- | | 11 | thorization Act of 2010 (42 U.S.C. 18322). | | 12 | (c) Sense of Congress on Space Launch Sys- | | 13 | TEM, ORION, AND EXPLORATION GROUND SYSTEMS.—It | | 14 | is the sense of Congress that— | | 15 | (1) as the United States works to send humans | | 16 | on a series of missions to Mars in the 2030s, the | | 17 | United States national space program should con- | | 18 | time to make progress on its commitment by fully | | 19 | developing the Space Launch System, Orion, and re- | | 20 | lated Exploration Ground Systems; | | 21 | (2) using the Space Launch System and Orion | | 22 | for a wide range of contemplated missions will facili- | | 23 | tate the national defense, science, and exploration | | 24 | objectives of the United States; | | | 1 (3) the United States should have continuity of | |----|---| | , | purpose for the Space Launch System and Orion in | | | deep space exploration missions, using them begin- | | 4 | ning with the uncrewed mission, EM-1, planned for | | 4 | 2018, followed by the crewed mission, EM-2, in cis- | | ć | lunar space planned for 2021, and for subsequent | | 7 | missions beginning with EM-3 extending into cis- | | 8 | lunar space and eventually to Mars; | | 9 | (4) the President's annual budget requests for | | 10 | the Space Launch System and Orion development, | | 11 | test, and operational phases should strive to accu- | | 12 | rately reflect the resource requirements of each of | | 13 | those phases; | | 14 | (5) the fully integrated Space Launch System, | | 15 | including an upper stage needed to go beyond low- | | 16 | Earth orbit, will safely enable human space explo- | | 17 | ration of the Moon, Mars, and beyond; and | | 18 | (6) the Administrator should budget for and | | 19 | undertake a robust ground test and uncrewed and | | 20 | crewed flight test and demonstration program for | | 21 | the Space Launch System and Orion in order to pro- | | 22 | mote safety and reduce programmatic risk. | | 23 | (d) In General.—The Administrator shall continue | | 24 | the development of the fully integrated Space Launch Sys- | | 25 | tem, including an upper stage needed to go beyond low- | | 1 | Earth orbit, in order to safely enable human space explo | |-----|--| | 2 | ration of the Moon, Mars, and beyond over the course of | | 3 | the next century as required in section 302(c) of the Na | | 4 | tional Aeronautics and Space Administration Authoriza | | 5 | tion Act of 2010 (42 U.S.C. 18322(e)). | | 6 | (e) Report.— | | 7 | (1) In general.—Not later than 60 days after | | 8 | the date of enactment of this Act, the Administrator | | 9 | shall submit to the appropriate committees of Con- | | 10 | gress a report addressing the ability of Orion to | | 11 | meet the needs and the minimum capability require- | | 12 | ments described in section 303(b)(3) of the National | | 13 | Aeronautics and Space Administration Authorization | | 4 | Act of 2010 (42 U.S.C. 18323(b)(3)). | | 5 | (2) Contents.—The report shall detail— | | 6 | (A) those components and systems of | | 7 | Orion that ensure it is in compliance with sec- | | 8 | tion 303(b)(3) of that Act (42 U.S.C. | | 9 | 18323(b)(3)); | | 0.9 | (B) the expected date that Orion, inte- | | 21 | grated with a vehicle other than the Space | | 22 | Launch System, could be available to transport | | 23 | crew and cargo to the ISS; | | 24 | (C) any impacts to the deep space explo- | | 25 | ration missions under subsection (f) of this sec- | | 1 | tion due to enabling Orion to meet the min- | |----|---| | 2 | imum capability requirements described in sec- | | 3 | tion 303(b)(3) of that Act (42 U.S.C. | | 4 | 18323(b)(3)) and conducting the mission de- | | 5 | scribed in subparagraph (B) of this paragraph; | | 6 | and | | 7 | (D) the overall cost and schedule impacts | | 8 | associated with enabling Orion to meet the min- | | 9 | imum capability requirements described in sec- | | 10 | tion 303(b)(3) of that Act (42 U.S.C. | | 11 | 18323(b)(3)) and conducting the mission de- | | 12 | scribed in subparagraph (B) of this paragraph. | | 13 | (f) Exploration Missions.—The Administrator | | 14 | shall continue development of— | | 15 | (1) an uncrewed exploration mission to dem- | | 16 | onstrate the capability of both the Space Launch | | 17 | System and Orion as an integrated system by 2018; | | 18 | (2) subject to applicable human rating proc- | | 19 | esses and requirements, a crewed exploration mis- | | 20 | sion to demonstrate the Space Launch System, in- | | 21 | cluding the Core Stage and Exploration Upper | | 22 | Stages, by 2021; | | 23 | (3) subsequent missions beginning with EM-3 | | 24 | at operational flight rate sufficient to maintain safe- | | 25 | ty and operational readiness using the Space Launch | | 1 | System and Orion to extend into cis-lunar space and | |----|---| | 2 | eventually to Mars; and | | 3 | (4) a deep space habitat as a key element in a | | 4 | deep space exploration architecture along with the | | 5 | Space Launch System and Orion. | | 6 | (g) Other Uses.—The Administrator shall assess | | 7 | the utility of the Space Launch System for use by the | | 8 | science community and for other Federal Government | | 9 | launch needs, including consideration of overall cost and | | 10 | schedule savings from reduced transit times and increased | | 11 | science returns enabled by the unique capabilities of the | | 12 | Space Launch System. | | 13 | (h) UTILIZATION REPORT.— | | 14 | (1) In General.—The Administrator, in con- | | 15 | sultation with the Secretary of Defense and the Di- | | 16 | rector of National Intelligence, shall prepare a re- | | 17 | port that addresses the effort and budget required to | | 18 | enable and utilize a cargo variant of the 130-ton | | 19 | Space Launch System configuration described in | | 20 | section 302(c) of the National Aeronautics and | | 21 | Space Administration Authorization Act of 2010 (42 | | 22 | U.S.C. 18322(c)). | | 23 | (2) Contents.—In preparing the report, the | | 24 | Administrator shall— | | 1 | (A) consider the technical requirements of | |---------------------------------------|---| | 2 | the scientific and national security communities | | 3 | related to a cargo variant of the Space Launch | | 4 | System; and | | 5 | (B) directly assess the utility and esti- | | 6 | mated cost savings obtained by using a cargo | | 7 | variant of the Space Launch System for na- | | 8 | tional security and space science missions. | | 9 | (3) Submission to congress.—Not later than | | 0 | 180 days after the date of enactment of this Act, the | | 1 | Administrator shall submit the report to the appro- | | 2 | priate committees of Congress. | | . 4 | 1 | | 3 | Subtitle C—Journey to Mars | | | | | 3 | Subtitle C—Journey to Mars | | 3 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. | | 3
.4
.5 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: | | 3
.4
.5
.6 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the Na- | | 13
14
15
16
17 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the National Aeronautics and Space Administration Au- | | 13
14
15
16
17 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the National Aeronautics and
Space Administration Authorization Act of 2010 (124 Stat. 2813), the National 2813) | | 13
4
.5
.6
.7
.8
.9 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the National Aeronautics and Space Administration Authorization Act of 2010 (124 Stat. 2813), the National Academies of Sciences, Engineering, and Med- | | 13
4
.5
.6
.7
.8 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the National Aeronautics and Space Administration Authorization Act of 2010 (124 Stat. 2813), the National Academies of Sciences, Engineering, and Medicine, through its Committee on Human Spaceflight, | | 13
4
.5
.6
.7
.8
.9 | Subtitle C—Journey to Mars SEC. 431. FINDINGS ON HUMAN SPACE EXPLORATION. Congress makes the following findings: (1) In accordance with section 204 of the National Aeronautics and Space Administration Authorization Act of 2010 (124 Stat. 2813), the National Academies of Sciences, Engineering, and Medicine, through its Committee on Human Spaceflight, conducted a review of the goals, core capabilities, | | 1 | Approaches for a U.S. Program of Human Space | |----|--| | 2 | Exploration". | | 3 | (2) The Committee on Human Spaceflight in- | | 4 | cluded leaders from the aerospace, scientific, secu- | | 5 | rity, and policy communities. | | 6 | (3) With input from the public, the Committee | | 7 | on Human Spaceflight concluded that many prac- | | 8 | tical and aspirational rationales for human space | | 9 | flight together constitute a compelling case for con- | | 10 | tinued national investment and pursuit of human | | 11 | space exploration toward the horizon goal of Mars. | | 12 | (4) According to the Committee on Human | | 13 | Spaceflight, the rationales include economic benefits, | | 14 | national security, national prestige, inspiring stu- | | 15 | dents and other citizens, scientific discovery, human | | 16 | survival, and a sense of shared destiny. | | 17 | (5) The Committee on Human Spaceflight af- | | 18 | firmed that Mars is the appropriate long-term goal | | 19 | for the human space flight program. | | 20 | (6) The Committee on Human Spaceflight rec- | | 21 | ommended that NASA define a series of sustainable | | 22 | steps and conduct mission planning and technology | | 23 | development as needed to achieve the long-term goal | | 24 | of placing humans on the surface of Mars. | | 1 | (7) Expanding human presence beyond low- | |-----|---| | 2 | Earth orbit and advancing toward human missions | | 3 | to Mars requires early planning and timely decisions | | 4 | to be made in the near-term on the necessary | | 5 | courses of action for commitments to achieve short- | | 6 | term and long-term goals and objectives. | | 7 | (8) In addition to the 2014 report described in | | 8 | paragraph (1), there are several independently devel- | | 9 | oped reports or concepts that describe potential | | 10 | Mars architectures or concepts and identify Mars as | | 11 | the long-term goal for human space exploration, in- | | -12 | cluding NASA's "The Global Exploration Roadmap" | | 13 | of 2013, "NASA's Journey to Mars-Pioneering | | 14 | Next Steps in Space Exploration" of 2015, NASA | | 15 | Jet Propulsion Laboratory's "Minimal Architecture | | 16 | for Human Journeys to Mars" of 2015, and Explore | | 17 | Mars' "The Humans to Mars Report 2016". | | 18 | SEC. 432. HUMAN EXPLORATION ROADMAP. | | 19 | (a) Sense of Congress.—It is the sense of Con- | | 20 | gress that— | | 21 | (1) expanding human presence beyond low- | | 22 | Earth orbit and advancing toward human missions | | 23 | to Mars in the 2030s requires early strategic plan- | | 24 | ning and timely decisions to be made in the near- | | 25 | term on the necessary courses of action for commit- | ments to achieve short-term and long-term goals and 1 2 objectives; (2) for strong and sustained United States 3 leadership, a need exists to advance a human explo-4 ration roadmap, addressing exploration objectives in 5 collaboration with international, academic, and in-6 7 dustry partners; (3) an approach that incrementally advances to-8 ward a long-term goal is one in which nearer-term 9 developments and implementation would influence 10 future development and implementation; and 11 (4) a human exploration roadmap should begin 12 with low-Earth orbit, then address in greater detail 13 progress beyond low-Earth orbit to eis-lunar space, 14 and then address future missions aimed at human 15 arrival and activities near and then on the surface 16 17 of Mars. (b) Human Exploration Roadmap.— 18 (1) IN GENERAL.—The Administrator shall de-19 velop a human exploration roadmap, including a 20 critical decision plan, to expand human presence be-21 yond low-Earth orbit to the surface of Mars and be-22 yond, considering potential interim destinations such 23 as cis-lunar space and the moons of Mars. 24 | 1 | (2) Scope.—The human exploration roadmap | |----|--| | 2 | shall include— | | 3 | (A) an integrated set of exploration, | | 4 | science, and other goals and objectives of a | | 5 | United States human space exploration pro- | | 6 | gram to achieve the long-term goal of human | | 7 | missions near or on the surface of Mars in the | | 8 | 2030s; | | 9 | (B) opportunities for international, aca- | | 10 | demic, and industry partnerships for explo- | | 11 | ration-related systems, services, research, and | | 12 | technology if those opportunities provide cost- | | 13 | savings, accelerate program schedules, or other- | | 14 | wise benefit the goals and objectives developed | | 15 | under subparagraph (A); | | 16 | (C) sets and sequences of precursor mis- | | 17 | sions in cis-lunar space and other missions or | | 18 | activities necessary— | | 19 | (i) to demonstrate the proficiency of | | 20 | the capabilities and technologies identified | | 21 | under subparagraph (D); and | | 22 | (ii) to meet the goals and objectives | | 23 | developed under subparagraph (A), includ- | | 24 | ing anticipated timelines and missions for | | 25 | the Space Launch System and Orion; | | 1 | (D) an identification of the specific capa | |----|---| | 2 | bilities and technologies, including the Space | | 3 | Launch System, Orion, a deep space habitat | | 4 | and other capabilities, that facilitate the goals | | 5 | and objectives developed under subparagraph | | 6 | $(\Lambda);$ | | 7 | (E) a description of how cis-lunar ele- | | 8 | ments, objectives, and activities advance the | | 9 | human exploration of Mars; | | 10 | (F) an assessment of potential human | | 11 | health and other risks, including radiation expo- | | 12 | sure; | | 13 | (G) mitigation plans, whenever possible, to | | 14 | address the risks identified in subparagraph | | 15 | (F); | | 16 | (H) a description of those technologies al- | | 17 | ready under development across the Federal | | 18 | Government or by other entities that facilitate | | 19 | the goals and objectives developed under sub- | | 20 | paragraph (A); | | 21 | (I) a specific process for the evolution of | | 22 | the capabilities of the fully integrated Orion | | 23 | with the Space Launch System and a descrip- | | 24 | tion of how these systems facilitate the goals | | 25 | and objectives developed under subparagraph | | 1 | (Λ) and demonstrate the capabilities and tech- | |----|--| | 2 | nologies described in subparagraph (D); | | 3 | (J) a description of the capabilities and | | 4 | technologies that need to be demonstrated or | | 5 | research data that could be gained through the | | 6 | utilization of the ISS and the status of the de- | | 7 | velopment of such capabilities and technologies; | | 8 | (K) a framework for international coopera- | | 9 | tion in the development of all capabilities and | | 10 | technologies identified under this section, in- | | 11 | cluding an assessment of the risks posed by re- | | 12 | lying on international partners for capabilities | | 13 | and technologies on the critical path of develop- | | 14 | ment; | | 15 | (L) a process for partnering with non- | | 16 | governmental entities using Space Act Agree- | | 17 | ments or other acquisition instruments for fu- | | 18 | ture human space exploration; and | | 19 | (M) include information on the phasing of | | 20 | planned intermediate destinations, Mars mis- | | 21 | sion risk areas and potential risk mitigation ap- | | 22 | proaches, technology requirements and phasing | | 23 | of required technology development activities, | | 24 | the management strategy to be followed, related | | 25 | ISS activities, planned international collabo- | | 1 | rative activities, potential commercial contribu- | |----|--| | 2 | tions, and other activities relevant to the | | 3 | achievement of the goal established in this sec- | | 4 | tion. | | 5 | (3) Considerations.—In developing the | | 6 | human exploration roadmap, the Administrator shall | | 7 | consider— | | 8 | (A) using key exploration capabilities, | | 9 | namely the Space Launch System and Orion; | | 10 | (B) using existing commercially available | | 11 | technologies and capabilities or those tech- | | 12 | nologies and capabilities being developed by in- | | 13 | dustry for commercial purposes; | | 14 | (C) establishing an organizational ap- | | 15 | proach to ensure collaboration and coordination | | 16 | among NASA's Mission Directorates under sec- | | 17 | tion 821, when appropriate, including to collect | | 18 | and return to Earth a sample from the Martian | | 19 | surface; | | 20
| (D) building upon the initial uncrewed | | 21 | mission, EM-1, and first crewed mission, EM- | | 22 | 2, of the Space Launch System and Orion to | | 23 | establish a sustainable cadence of missions ex- | | 24 | tending human exploration missions into eis- | | | - | |----|---| | 1 | lunar space, including anticipated timelines and | | 2 | milestones; | | 3 | (E) developing the robotic and precursor | | 4 | missions and activities that will demonstrate, | | 5 | test, and develop key technologies and capabili- | | 6 | ties essential for achieving human missions to | | 7 | Mars, including long-duration human oper- | | 8 | ations beyond low-Earth orbit, space suits, solar | | 9 | electric propulsion, deep space habitats, envi- | | 10 | ronmental control life support systems, Mars | | 11 | lander and ascent vehicle, entry, descent, land- | | 12 | ing, ascent, Mars surface systems, and in-situ | | 13 | resource utilization; | | 14 | (F) demonstrating and testing 1 or more | | 15 | habitat modules in cis-lunar space to prepare | | 16 | for Mars missions; | | 17 | (G) using public-private, firm fixed-price | | 18 | partnerships, where practicable; | | 19 | (H) collaborating with international, aca- | | 20 | demic, and industry partners, when appro- | | 21 | priate; | | 22 | (I) any risks to human health and sensitive | | 23 | onboard technologies, including radiation expo- | | 24 | sure; | | | | | 1 | (J) any risks identified through research | |----|---| | 2 | outcomes under the NASA Human Research | | 3 | Program's Behavioral Health Element; and | | 4 | (K) the recommendations and ideas of sev- | | 5 | eral independently developed reports or con- | | 6 | cepts that describe potential Mars architectures | | 7 | or concepts and identify Mars as the long-term | | 8 | goal for human space exploration, including the | | 9 | reports described under section 431. | | 10 | (4) CRITICAL DECISION PLAN ON HUMAN SPACE | | 11 | EXPLORATION.—As part of the human exploration | | 12 | roadmap, the Administrator shall include a critical | | 13 | decision plan— | | 14 | (A) identifying and defining key decisions | | 15 | guiding human space exploration priorities and | | 16 | plans that need to be made before June 30, | | 17 | 2020, including decisions that may guide | | 18 | human space exploration capability develop- | | 19 | ment, precursor missions, long-term missions, | | 20 | and activities; | | 21 | (B) defining decisions needed to maximize | | 22 | efficiencies and resources for reaching the near, | | 23 | intermediate, and long-term goals and objec- | | 24 | tives of human space exploration; and | | 1 | (C) identifying and defining timelines and | |----|--| | 2 | milestones for a sustainable cadence of missions | | 3 | beginning with EM-3 for the Space Launch | | 4 | System and Orion to extend human exploration | | 5 | from cis-lunar space to the surface of Mars. | | 6 | (5) Reports.— | | 7 | (A) INITIAL HUMAN EXPLORATION ROAD- | | 8 | MAP.—The Administrator shall submit to the | | 9 | appropriate committees of Congress— | | 10 | (i) an initial human exploration road- | | 11 | map, including a critical decision plan, be- | | 12 | fore December 1, 2017; and | | 13 | (ii) an updated human exploration | | 14 | roadmap periodically as the Administrator | | 15 | considers necessary but not less than bien- | | 16 | nially. | | 17 | (B) Contents.—Each human exploration | | 18 | roadmap under this paragraph shall include a | | 19 | description of— | | 20 | (i) the achievements and goals accom- | | 21 | plished in the process of developing such | | 22 | capabilities and technologies during the 2- | | 23 | year period prior to the submission of the | | 24 | human exploration roadmap; and | | 1 | (ii) the expected goals and achieve- | |----|--| | 2 | ments in the following 2- year period. | | 3 | (C) SUBMISSION WITH BUDGET.—Each | | 4 | human exploration roadmap under this section | | 5 | shall be included in the budget for that fiscal | | 6 | year transmitted to Congress under section | | 7 | 1105(a) of title 31, United States Code. | | 8 | SEC. 433. ADVANCED SPACE SUIT CAPABILITY. | | 9 | Not later than 90 days after the date of enactment | | 10 | of this Act, the Administrator shall submit to the appro- | | 11 | priate committees of Congress a detailed plan for achiev- | | 12 | ing an advanced space suit capability that aligns with the | | 13 | crew needs for exploration enabled by the Space Launch | | 14 | System and Orion, including an evaluation of the merit | | 15 | of delivering the planned suit system for use on the ISS. | | 16 | SEC. 434. ASTEROID ROBOTIC REDIRECT MISSION. | | 17 | (a) FINDINGS.—Congress makes the following find- | | 18 | ings: | | 19 | (1) NASA initially estimated that the Asteroid | | 20 | Robotic Redirect Mission would launch in December | | 21 | 2020 and cost no more than \$1,250,000,000, ex- | | 22 | cluding launch and operations. | | 23 | (2) On July 15, 2016, NASA conducted its Key | | 24 | Decision Point_B review of the Asteroid Robotic Re- | | 1 | direct Mission or approval for Phase B in mission | |----|---| | 2 | formulation. | | 3 | (3) During the Key Decision Point-B review, | | 4 | NASA estimated that costs have grown to | | 5 | \$1,400,000,000 excluding launch and operations for | | 6 | a launch in December 2021 and the agency must | | 7 | evaluate whether to accept the increase or reduce the | | 8 | Asteroid Robotic Redirect Mission's scope to stay | | 9 | within the cost cap set by the Administrator. | | 10 | (4) In April 2015, the NASA Advisory Coun- | | 11 | cil— | | 12 | (A) issued a finding that— | | 13 | (i) high-performance solar electric | | 14 | propulsion will likely be an important part | | 15 | of an architecture to send humans to | | 16 | Mars; and | | 17 | (ii) maneuvering a large test mass is | | 18 | not necessary to provide a valid in-space | | 19 | test of a new solar electric propulsion | | 20 | stage; | | 21 | (B) determined that a solar electric propul- | | 22 | sion mission will contribute more directly to the | | 23 | goal of sending humans to Mars if the mission | | 24 | is focused entirely on development and valida- | | 25 | tion of the solar electric propulsion stage; and | | 1 | (C) determined that other possible motiva- | |----|--| | 2 | tions for acquiring and maneuvering a boulder, | | 3 | such as asteroid science and planetary defense, | | 4 | do not have value commensurate with their | | 5 | probable cost. | | 6 | (5) The Asteroid Robotic Redirect Mission is | | 7 | competing for resources with other critical explo- | | 8 | ration development programs, including the Space | | 9 | Launch System, Orion, commercial crew, and a hab- | | 10 | itation module. | | 11 | (6) In 2014, the NASA Advisory Council rec- | | 12 | ommended that NASA conduct an independent cost | | 13 | and technical assessment of the Asteroid Robotic | | 14 | Redirect Mission. | | 15 | (7) In 2015, the NASA Advisory Council rec- | | 16 | ommended that NASA preserve the following key ob- | | 17 | jectives if the program needed to be descoped: | | 18 | (A) Development of high power solar elec- | | 19 | tric propulsion. | | 20 | (B) Ability to maneuver in a low gravity | | 21 | environment in deep space. | | 22 | (8) In January 2015 and July 2015, the NASA | | 23 | Advisory Council expressed its concern to NASA | | 24 | about the potential for growing costs for the pro- | | 1 | gram and highlighted that choices would need to be | |----|--| | 2 | made about the program's content. | | 3 | (b) Sense of Congress.—It is the sense of Con- | | 4 | gress that— | | 5 | (1) the technological and scientific goals of the | | 6 | Asteroid Robotic Redirect Mission have not been | | 7 | demonstrated to Congress to be commensurate with | | 8 | the cost; and | | 9 | (2) alternative missions may provide a more | | 10 | cost effective and scientifically beneficial means to | | 11 | demonstrate the technologies needed for a human | | 12 | mission to Mars that would otherwise be dem- | | 13 | onstrated by the Asteroid Robotic Redirect Mission. | | 14 | (c) Evaluation and Report.—Not later than 180 | | 15 | days after the date of enactment of this Δct , the $\Delta dminis$ | | 16 | trator shall— | | 17 | (1) conduct an evaluation of— | | 18 | (A) alternative approaches to the Asteroid | | 19 | Robotic Redirect Mission for demonstrating the | | 20 | technologies and capabilities needed for a | | 21 | human mission to Mars that would otherwise be | | 22 | demonstrated by the Asteroid Robotic Redirect | | 23 | Mission; | | 24 | (B) the scientific and technical benefits of | | 25 | the alternative approaches under subparagraph | | 1 | (A) to future human space exploration com- | |----|--| | 2 | pared to scientific and technical benefits of the | | 3 | Asteroid Redirect Robotic Mission; | | 4 | (C) the commercial benefits of the alter- | | 5 | native approaches identified in subparagraph | | 6 | (Λ) , including the impact on the development of | | 7 | domestic solar electric propulsion technology to | | 8 | bolster United States competitiveness in the | | 9 | global marketplace; and | | 10 | (D) a comparison of the estimated costs of | | 11 | the alternative approaches identified in sub- | | 12 | paragraph (A); and | | 13 | (2) submit to the appropriate committees of | | 14 | Congress a report on the evaluation under para- | | 15 | graph (1), including any recommendations. | | 16 | SEC. 435. MARS 2033 REPORT. | | 17 | (a) In General.—Not later than 120 days
after the | | 18 | date of enactment of this Δct , the $\Delta dministrator$ shall con- | | 19 | tract with an independent, non-governmental systems en- | | 20 | gineering and technical assistance organization to study | | 21 | a Mars human space flight mission to be launched in | | 22 | 2033. | | 23 | (b) Contents.—The study shall include— | | 24 | (1) a technical development, test, fielding, and | | 25 | operations plan using the Space Launch System, | | 1 | Orion, and other systems to successfully launch such | |----|--| | 2 | a Mars human space flight mission by 2033; | | 3 | (2) an annual budget profile, including cost es- | | 4 | timates, for the technical development, test, fielding, | | 5 | and operations plan to carry out a Mars human | | 6 | space flight mission by 2033; and | | 7 | (3) a comparison of the annual budget profile | | 8 | to the 5-year budget profile contained in the Presi- | | 9 | dent's budget request for fiscal year 2017 under sec- | | 10 | tion 1105 of title 31, United States Code. | | 11 | (c) REPORT.—Not later than 180 days after the date | | 12 | of enactment of this Act, the Administrator shall submit | | 13 | to the appropriate committees of Congress a report on the | | 14 | study, including findings and recommendations regarding | | 15 | the Mars 2033 human space flight mission described in | | 16 | subsection (a). | | 17 | (d) Assessment.—Not later than 60 days after the | | 18 | date the report is submitted under subsection (c), the Ad- | | 19 | ministrator shall submit to the appropriate committees of | | 20 | Congress an assessment by the NASA Advisory Council | | 21 | of whether the proposal for a Mars human space flight | | 22 | mission to be launched in 2033 is in the strategic interests | | 23 | of the United States in space exploration. | ## 1 Subtitle D—TREAT Astronauts Act - 2 SEC. 441. SHORT TITLE. - This subtitle may be cited as the "To Research, - 4 Evaluate, Assess, and Treat Astronauts Act'' or the - 5 "TREAT Astronauts Act". - 6 SEC. 442. FINDINGS; SENSE OF CONGRESS. - 7 (a) FINDINGS.—Congress makes the following find- - 8 ings: - 9 (1) Human space exploration can pose signifi- - 10 cant challenges and is full of substantial risk, which - 11 has ultimately claimed the lives of 24 NASA astro- - 12 nauts serving in the line of duty. - 13 (2) As United States government astronauts - 14 participate in long-duration and exploration space - 15 flight missions they may experience increased health - 16 risks, such as vision impairment, bone - demineralization, and behavioral health and perform- - ance risks, and may be exposed to galactic cosmic - 19 radiation. Exposure to high levels of radiation and - 20 microgravity can result in acute and long-term - 21 health consequences that can increase the risk of - cancer and tissue degeneration and have potential - effects on the musculoskeletal system, central nerv- - ous system, cardiovascular system, immune function, - and vision. | 1 | (3) To advance the goal of long-duration and | |----|--| | 2 | exploration space flight missions, United States gov- | | 3 | ernment astronaut Scott Kelly participated in a 1- | | 4 | year twins study in space while his identical twin | | 5 | brother, former United States government astronaut | | 6 | Mark Kelly, acted as a human control specimen on | | 7 | Earth, providing an understanding of the physical, | | 8 | behavioral, microbiological, and molecular reaction of | | 9 | the human body to an extended period of time in | | 10 | space. | | 11 | (4) Since the Administration currently provides | | 12 | medical monitoring, diagnosis, and treatment for | | 13 | United States government astronauts during their | | 14 | active employment, given the unknown long-term | | 15 | health consequences of long-duration space explo- | | 16 | ration, the Administration has requested statutory | | 17 | authority from Congress to provide medical moni- | | 18 | toring, diagnosis, and treatment to former United | | 9 | States government astronauts for psychological and | | 20 | medical conditions associated with human space | | 21 | flight. | | 22 | (b) Sense of Congress.—It is the sense of Con- | | 23 | gress that— | | 4 | (1) the United States should continue to seek | | 5 | the unknown and lead the world in space exploration | | 1 | and scientific discovery as the Administration pre- | |-----|---| | 2 | pares for long-duration and exploration space flight | | 3 - | in deep space and an eventual mission to Mars; | | 4 | (2) data relating to the health of astronauts will | | 5 | become increasingly valuable to improving our un- | | 6 | derstanding of many diseases humans face on Earth; | | 7 | (3) the Administration should provide the type | | 8 | of monitoring, diagnosis, and treatment described in | | 9 | subsection (a) only for conditions the Administration | | 10 | considers unique to the training or exposure to the | | 11 | space flight environment of United States govern- | | 12 | ment astronauts and should not require any former | | 13 | United States Government astronauts to participate | | 14 | in the Administration's monitoring; | | 15 | (4) such monitoring, diagnosis, and treatment | | 16 | should not replace a former United States govern- | | 17 | ment astronaut's private health insurance; | | 18 | (5) expanded data acquired from such moni- | | 19 | toring, diagnosis, and treatment should be used to | | 20 | tailor treatment, inform the requirements for new | | 21 | space flight medical hardware, and develop controls | | 22 | in order to prevent disease occurrence in the astro- | | 23 | naut corps; and | | 24 | (6) the 340-day space mission of Scott Kelly | | 25 | aboard the ISS— | | 43 | END OF THE TOTAL CO. | | 1 | (A) was pivotal for the goal of the United | |----|--| | 2 | States for humans to explore deep space and | | 3 | Mars as the mission generated new insight into | | 4 | how the human body adjusts to weightlessness, | | 5 | isolation, radiation, and the stress of long-dura- | | 6 | tion space flight; and | | 7 | (B) will help support the physical and | | 8 | mental well-being of astronauts during longer | | 9 | space exploration missions in the future. | | 10 | SEC. 443. MEDICAL MONITORING AND RESEARCH RELAT- | | 11 | ING TO HUMAN SPACE FLIGHT. | | 12 | (a) In General.—Subchapter III of chapter 201 of | | 13 | title 51, United States Code, as amended by section 305 | | 14 | of this Act, is further amended by adding at the end the | | 15 | following: | | 16 | "§ 20149. Medical monitoring and research relating to | | 17 | human space flight | | 18 | "(a) In General.—Notwithstanding any other pro- | | 19 | vision of law, the Administrator may provide for— | | 20 | "(1) the medical monitoring and diagnosis of a | | 21 | former United States government astronaut or a | | 22 | former payload specialist for conditions that the Ad- | | 23 | ministrator considers potentially associated with | | 24 | human space flight; and | | 1 | "(2) the treatment of a former United States | |-----|---| | 2 | government astronaut or a former payload specialist | | 3 | for conditions that the Administrator considers asso- | | 4 | ciated with human space flight, including scientific | | 5 | and medical tests for psychological and medical con- | | 6 - | ditions. | | 7 | "(b) Requirements.— | | 8 | "(1) No cost sharing.—The medical moni- | | 9 | toring, diagnosis, or treatment described in sub- | | 10 | section (a) shall be provided without any deductible, | | 11 | copayment, or other cost sharing obligation. | | 12 | "(2) Access to local services.—The med- | | 13 | ical monitoring, diagnosis, and treatment described | | 14 | in subsection (a) may be provided by a local health | | 15 | care provider if it is unadvisable due to the health | | 16 | of the applicable former United States government | | 17 | astronaut or former payload specialist for that | | 18 | former United States government astronaut or | | 19 | former payload specialist to travel to the Lyndon B. | | 20 | Johnson Space Center, as determined by the Admin- | | 21 | istrator. | | 22 | "(3) Secondary Payment.—Payment or reim- | | 23 | bursement for the medical monitoring, diagnosis, or | | 24 | treatment described in subsection (a) shall be sec- | | 25 | ondary to any obligation of the United States Gov- | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ernment or any third party under any other provision of law or contractual agreement to pay for or provide such medical monitoring, diagnosis, or treatment. Any costs for items and services that may be provided by the Administrator for medical monitoring, diagnosis, or treatment under subsection (a) that are not paid for or provided under such other provision of law or contractual agreement, due to the application of deductibles, copayments, coinsurance, other cost sharing, or otherwise, are reimbursable by the Administrator on behalf of the former United States government astronaut or former payload specialist involved to the extent such items or services are authorized to be provided by the Administrator for such medical monitoring, diagnosis, or treatment under subsection (a). "(4) CONDITIONAL PAYMENT.—The Administrator may provide for conditional payments for or provide medical monitoring, diagnosis, or treatment described in subsection (a) that is obligated to be paid for or provided by the United States or any third party under any other provision of law or contractual agreement to pay for or provide such medical monitoring, diagnosis, or treatment if— | | "(A) payment for (or the provision of) | |----|--| | 1 | such medical monitoring,
diagnosis, or treat- | | 2 | | | 3 | ment services has not been made (or provided) | | 4 | or cannot reasonably be expected to be made | | 5 | (or provided) promptly by the United States or | | 6 | such third party, respectively; and | | 7 | "(B) such payment (or such provision of | | 8 | services) by the Administrator is conditioned on | | 9 | reimbursement by the United States or such | | 10 | third party, respectively, for such medical moni- | | 11 | toring, diagnosis, or treatment. | | 12 | "(c) Exclusions.—The Administrator may not— | | 13 | "(1) provide for medical monitoring or diag- | | 14 | nosis of a former United States government astro- | | 15 | naut or former payload specialist under subsection | | 16 | (a) for any psychological or medical condition that | | 17 | is not potentially associated with human space flight; | | 18 | "(2) provide for treatment of a former United | | 19 | States government astronaut or former payload spe- | | 20 | cialist under subsection (a) for any psychological or | | 21 | medical condition that is not associated with human | | 22 | space flight; or | | 23 | "(3) require a former United States govern- | | 24 | ment astronaut or former payload specialist to par- | - 1 ticipate in the medical monitoring, diagnosis, or - 2 treatment authorized under subsection (a). - 3 "(d) Privacy.—Consistent with applicable provisions - 4 of Federal law relating to privacy, the Administrator shall - 5 protect the privacy of all medical records generated under - 6 subsection (a) and accessible to the Administration. - 7 "(e) Regulations.—The Administrator shall pro- - 8 mulgate such regulations as are necessary to carry out this - 9 section. - 10 "(f) Definition of United States Government - 11 ASTRONAUT.—In this section, the term 'United States - 12 government astronaut' has the meaning given the term - 13 'government astronaut' in section 50902, except it does - 14 not include an individual who is an international partner - 15 astronaut. - 16 "(g) Data Use and Disclosure.—The Adminis- - 17 trator may use or disclose data acquired in the course of - 18 medical monitoring, diagnosis, or treatment of a former - 19 United States government astronaut or a former payload - 20 specialist under subsection (a), in accordance with sub- - 21 section (d). Former United States government astronaut - 22 or former payload specialist participation in medical moni- - 23 toring, diagnosis, or treatment under subsection (a) shall - 24 constitute consent for the Administrator to use or disclose - 25 such data.". (b) Table of Contents.—The table of contents for 1 chapter 201 of title 51, United States Code, as amended by section 305 of this Act, is further amended by inserting after the item relating to section 20148 the following: "20149. Medical monitoring and research relating to human space flight.". 5 (c) Annual Reports.— (1) IN GENERAL.—Each fiscal year, not later 6 than the date of submission of the President's an-7 nual budget request for that fiscal year under sec-8 tion 1105 of title 31, United States Code, the Ad-9 ministrator shall publish a report, in accordance 10 with applicable Federal privacy laws, on the activi-11 ties of the Administration under section 20149 of 12 title 51, United States Code. 13 (2) Contents.—Each report under paragraph 14 (1) shall include a detailed cost accounting of the 15 Administration's activities under section 20149 of 16 title 51, United States Code, and a 5-year budget 17 estimate. 18 (3) Submission to congress.—The Adminis-19 trator shall submit to the appropriate committees of 20 Congress each report under paragraph (1) not later 21 than the date of submission of the President's an-22 nual budget request for that fiscal year under sec-23 tion 1105 of title 31, United States Code. 24 (d) Cost Estmate.— | | (1) Requirement.—Not later than 90 days | |----|--| | 1 | | | 2 | after the date of enactment of this Act, the Adminis- | | 3 | trator shall enter into an arrangement with an inde- | | 4 | pendent external organization to undertake an inde- | | 5 | pendent cost estimate of the cost to the Administra- | | 6 | tion and the Federal Government to implement and | | 7 | administer the activities of the Λ dministration under | | 8 | section 20149 of title 51, United States Code. The | | 9 | independent external organization may not be a | | 10 | NASA entity, such as the Office of Safety and Mis- | | 11 | sion Assurance. | | 12 | (2) SUBMITTAL TO CONGRESS.—Not later than | | 13 | 1 year after the date of the enactment of this Act, | | 14 | the Administrator shall submit to the appropriate | | 15 | committees of Congress the independent cost esti- | | 16 | mate under paragraph (1). | | 17 | (e) Privacy Study.— | | 18 | (1) STUDY.—The Administrator shall carry out | | 19 | a study on any potential privacy or legal issues re- | | 20 | lated to the possible sharing beyond the Federal | | 21 | Government of data acquired under the activities of | | 22 | the Administration under section 20149 of title 51, | | 23 | United States Code. | | 24 | (2) Report.—Not later than 270 days after | | 25 | the date of enactment of this Act, the Administrator | | 1 shall submit to the appropriate committees of Con- | |--| | 2 gress a report containing the results of the study | | 3 carried out under paragraph (1). | | 4 (f) Inspector General Audit.—The Inspector | | 5 General of NASA shall periodically audit or review, as the | | 6 Inspector General considers necessary to prevent waste, | | 7 fraud, and abuse, the activities of the Administration | | 8 under section 20149 of title 51, United States Code. | | 9 TITLE V—ADVANCING SPACE | | 10 SCIENCE | | 11 SEC. 501. MAINTAINING A BALANCED SPACE SCIENCE | | 12 PORTFOLIO. | | 13 (a) Sense of Congress on Science Portfolio.— | | 14 Congress reaffirms the sense of Congress that— | | 15 (1) a balanced and adequately funded set of ac- | | tivities, consisting of research and analysis grant | | 17 programs, technology development, suborbital re- | | search activities, and small, medium, and large space | | 19 missions, contributes to a robust and productive | | science program and serves as a catalyst for innova- | | 21 tion and discovery; and | | (2) the Administrator should set science prior- | | 23 ities by following the guidance provided by the sci- | | entific community through the National Academies | | 1 0 | f Sciences, Engineering, and Medicine's decadal | |------------|---| | 1 9 | onevevs. | | 2 (| (b) POLICY.—It is the policy of the United States to | | 4 ensu | re, to the extent practicable, a steady cadence of | | 5 large | , medium, and small science missions. | | | 502. PLANETARY SCIENCE. | | 7 | (a) FINDINGS.—Congress finds that— | | 8 | (1) Administration support for planetary | | 9 | science is critical to enabling greater understanding | | 10 | of the solar system and the origin of the Earth; | | 11 | (2) the United States leads the world in plan- | | 12 | etary science and can augment its success in that | | 13 | area with appropriate international, academic, and | | 14 | industry partnerships; | | 15 | (3) a mix of small, medium, and large planetary | | 16 | science missions is required to sustain a steady ca- | | 17 | dence of planetary exploration; and | | 18 | (4) robotic planetary exploration is a key com- | | 19 | ponent of preparing for future human exploration. | | 20 | (b) Mission Priorities.— | | 21 | (1) In GENERAL.—In accordance with the pri- | | 22 | orities established in the most recent Planetary | | 23 | Science Decadal Survey, the Administrator shall en- | | 24 | sure to the greatest extent practicable, the comple- | | 25 | tion of a balanced set of Discovery, New Frontiers, | | 1 | and Flagship missions at the cadence recommended | |----|--| | 2 | by the most recent Planetary Science Decadal Sur- | | 3 | vey. | | 4 | (2) Mission priority adjustments.—Con- | | 5 | sistent with the set of missions described in para- | | 6 | graph (1), and while maintaining the continuity of | | 7 | scientific data and steady development of capabilities | | 8 | and technologies, the Administrator may seek, if | | 9 | necessary, adjustments to mission priorities, sched- | | 10 | ule, and scope in light of changing budget projec- | | 11 | tions. | | 12 | SEC. 503. JAMES WEBB SPACE TELESCOPE. | | 13 | It is the sense of Congress that— | | 14 | (1) the James Webb Space Telescope will— | | 15 | (A) significantly advance our under- | | 16 | standing of star and planet formation, and im- | | 17 | prove our knowledge of the early universe; and | | 18 | (B) support United States leadership in | | 19 | astrophysics; | | 20 | (2) consistent with annual Government Ac- | | 21 | countability Office reviews of the James Webb Space | | 22 | Telescope program, the Administrator should con- | | 23 | time robust surveillance of the performance of the | | 24 | James Webb Space Telescope project and continue | | 25 | to improve the reliability of cost estimates and con- | | 1 | tractor performance data and other major space | |----|---| | 2 | flight projects in order to enhance NASA's ability to | | 3 | successfully deliver the James Webb Space Telescope | | 4 | on-time and within budget; | | 5 | (3) the on-time and on-budget delivery of the | | 6 | James Webb Space Telescope is a high congressional | | 7 | priority; and | | 8 | (4) the Administrator should ensure that inte- | | 9 | grated testing is appropriately timed and sufficiently | | 10 | comprehensive to enable potential issues to be identi- | | 11 | fied and addressed early enough to be handled with- | | 12 | in the James Webb Space Telescope's development | | 13 | schedule and prior to its
launch. | | 14 | SEC. 504. WIDE-FIELD INFRARED SURVEY TELESCOPE. | | 15 | (a) Sense of Congress.—It is the sense of Con- | | 16 | gress that— | | 17 | (1) the Wide-Field Infrared Survey Telescope | | 18 | (referred to in this section as "WFIRST") mission | | 19 | has the potential to enable scientific discoveries that | | 20 | will transform our understanding of the universe; | | 21 | and | | 22 | (2) the Administrator, to the extent practicable, | | 23 | should make progress on the technologies and capa- | | 24 | bilities needed to position the Administration to | | 25 | meet the objectives, as outlined in the 2010 National | | | Academies' Astronomy and Astrophysics Decadal | |--------|--| | 1 | Academies' Astronomy and restropayor | | 2 | Survey, in a way that maximizes the scientific pro- | | 3 | ductivity of meeting those objectives for the re- | | 4 | sources invested. | | 5 | (b) Continuity of Development.—The Adminis- | | 6 trat | or shall ensure that the concept definition and pre- | | 7 for | mulation activities of the WFIRST mission continue | | 8 whi | le the James Webb Space Telescope is being com- | | 9 ple | ted. | | 10 SE | C. 505. MARS 2020 ROVER. | | 11 | It is the sense of Congress that— | | 12 | (1) the Mars 2020 mission, to develop a Mars | | 13 | rover and to enable the return of samples to Earth, | | 14 | should remain a priority for NASA; and | | 15 | (2) the Mars 2020 mission— | | 16 | (A) should significantly increase our un- | | 17 | derstanding of Mars; | | 18 | (B) should help determine whether life pre- | | 19 | viously existed on that planet; and | | 20 | (C) should provide opportunities to gather | | 21 | knowledge and demonstrate technologies that | | 22 | address the challenges of future human expedi- | | 23 | tions to Mars. | | 1 | SEC. 506. EUROPA. | |-----|---| | 2 | (a) FINDINGS.—Congress makes the following find- | | 3 | ings: | | 4 | (1) Studies of Europa, Jupiter's moon, indicate | | 5 | that Europa may provide a habitable environment, | | 6 | as it contains key ingredients known to support life. | | , 7 | (2) In 2012, using the Hubble Space Telescope, | | 8 | NASA scientists observed water vapor around the | | 9 | south polar region of Europa, which provides poten- | | 10 | tial evidence of water plumes in that region. | | 11 | (3) For decades, the Europa mission has con- | | 12 | sistently ranked as a high priority mission for the | | 13 | scientific community. | | 14 | (4) The Europa mission was ranked as the top | | 15 | priority mission in the previous Planetary Science | | 16 | Decadal Survey and ranked as the second-highest | | 17 | priority in the current Planetary Science Decadal | | 18 | Survey. | | 19 | (b) Sense of Congress.—It is the sense of Con- | | 20 | gress that— | | 21 | (1) the Europa mission could provide another | | 22 | avenue in which to capitalize on our Nation's cur- | | 23 | rent investment in the Space Launch System that | | 24 | would significantly reduce the transit time for such | a deep space mission; and | 1 (2) a scientific, robotic exploration mission to | |---| | 2 Europa, as prioritized in both Planetary Science | | 3 Decadal Surveys, should be supported. | | 4 SEC. 507. CONGRESSIONAL DECLARATION OF POLICY AND | | 5 PURPOSE. | | 6 Section 20102(d) of title 51, United States Code, is | | 7 amended by adding at the end the following: | | 8 "(10) The search for life's origin, evolution, dis- | | 9 tribution, and future in the universe.". | | 10 SEC. 508. EXTRASOLAR PLANET EXPLORATION STRATEGY. | | 11 (a) Strategy.— | | 12 (1) In General.—The Administrator shall | | 13 enter into an arrangement with the National Λcad- | | emies to develop a science strategy for the study and | | 15 exploration of extrasolar planets, including the use | | of the Transiting Exoplanet Survey Satellite, the | | 17 James Webb Space Telescope, a potential Wide- | | 18 Field Infrared Survey Telescope mission, or any | | other telescope, spacecraft, or instrument, as appro- | | 20 priate. | | 21 (2) REQUIREMENTS.—The strategy shall— | | (A) outline key scientific questions; | | (B) identify the most promising research | | in the field; | | (C) indicate the extent to which the mis- | |--| | in priorities in existing decadal surveys ad- | | l are the key extrasolar planet research and ex- | | 1-notion coals: | | (T) identify opportunities for coordination | | interpolational partners, commercial part- | | and not-for-profit partners; and | | (E) make recommendations regarding the | | tides under subparagraphs (A) through | | | | (D), as appropriate. (b) Use of Strategy.—The Administrator shall use | | | | 12 the strategy— 13 (1) to inform roadmaps, strategic plans, and | | (1) to inform roadinaps, strateger 1 | | other activities of the Administration as they relate | | to extrasolar planet research and exploration; and | | 16 (2) to provide a foundation for future activities | | and initiatives related to extrasolar planet research | | and exploration. | | 19 (c) REPORT TO CONGRESS.—Not later than 18 | | 20 months after the date of enactment of this Act, the Na- | | 21 tional Academies shall submit to the Administrator and | | 22 to the appropriate committees of Congress a report con- | | 23 taining the strategy developed under subsection (a). | | 24 SEC. 509. ASTROBIOLOGY STRATEGY. | 25 (a) STRATEGY.— | 1 | (1) In General.—The Administrator shall | |----|---| | 2 | enter into an arrangement with the National Acad- | | 3 | emies to develop a science strategy for astrobiology | | 4 | that would outline key scientific questions, identify | | 5 | the most promising research in the field, and indi- | | 6 | cate the extent to which the mission priorities in ex- | | 7 | isting decadal surveys address the search for life's | | 8 | origin, evolution, distribution, and future in the Uni- | | 9 | verse. | | 10 | (2) RECOMMENDATIONS.—The strategy shall | | 11 | include recommendations for coordination with inter- | | 12 | national partners. | | 13 | (b) USE OF STRATEGY.—The Administrator shall use | | 14 | the strategy developed under subsection (a) in planning | | 15 | and funding research and other activities and initiatives | | 16 | in the field of astrobiology. | | 17 | (c) Report to Congress.—Not later than 18 | | 18 | months after the date of enactment of this Act, the Na- | | 19 | tional Academies shall submit to the Administrator and | | 20 | to the appropriate committees of Congress a report con- | | 21 | taining the strategy developed under subsection (a). | | 22 | SEC. 510. ASTROBIOLOGY PUBLIC-PRIVATE PARTNERSHIPS. | | 23 | Not later than 180 days after the date of enactment | | 24 | of this Act, the Administrator shall submit to the appro- | | 25 | priate committees of Congress a report describing how the | | 01 | |---| | 1 Administration can expand collaborative partnerships to | | 2 study life's origin, evolution, distribution, and future in | | 3 the universe. | | 4 SEC. 511, NEAR-EARTH OBJECTS. | | 5 Section 321 of the National Aeronautics and Space | | 6 Administration Authorization Act of 2005 (51 U.S.C. note | | 7 prec. 71101) is amended by adding at the end the fol- | | 8 lowing: | | 9 "(e) Program Report.—The Director of the Office | | 10 of Science and Technology Policy and the Administrator | | 11 shall submit to the Committee on Commerce, Science, and | | 12 Transportation of the Senate and the Committee on | | 13 Science, Space, and Technology of the House of Rep- | | 14 resentatives, not later than 1 year after the date of enact- | | 15 ment of the National Aeronautics and Space Administra- | | 16 tion Transition Authorization Act of 2017, an initial re- | | 17 port that provides— | | 18 "(1) recommendations for carrying out the Sur- | | 19 vey program and an associated proposed budget; | | 20 "(2) an analysis of possible options that the Ad- | | 21 ministration could employ to divert an object on a | | 22 likely collision course with Earth; and | | "(3) a description of the status of efforts to co- | | ordinate and cooperate with other countries to dis- | | cover hazardous asteroids and comets, plan a mitiga- | | tion strategy, and implement that strategy in the | |---| | 1 tion strategy, and implement on a likely colli- | | 2 event of the discovery of an object on a likely colli- | | 3 sion course with Earth. | | 4 "(f) Annual Reports.—After the initial report | | 5 under subsection (e), the Administrator shall annually | | to the Committee on Commerce, Science, and | | 7 Transportation of the Senate and the Committee on | | 8 Science, Space, and Technology of the House of Rep- | | 9 resentatives a report that includes— | | ((1) a symmatry of all activities carried out | | 10 "(1) a summary of the late of enactment of under subsection (d) since the date of enactment of | | Acronautics and Space Administration | | and the Authorization Act of 2017, including the | | terrord achieving 90 percent completion of | | described in subsection (d); and | | ((a) - common of expenditures for all activi- | | 16 "(2) a summary of experience (d) since the date | | ties carried out under subsection (d) since the date | | of enactment of the National Aeronautics and Space | | 19 Administration Transition Authorization Act of | | 20 2017. | | 21 "(g) Assessment.—The Administrator, in collabora- | | 22 tion with other relevant Federal agencies, shall carry out | | 23 a technical and scientific assessment of the capabilities | | 24 and resources— | | 1 | "(1) to accelerate
the survey described in sub- | |----|--| | 2 | section (d); and | | 3 | "(2) to expand the Administration's Near-Earth | | 4 | Object Program to include the detection, tracking, | | 5 | cataloguing, and characterization of potentially haz- | | 6 | ardous near-Earth objects less than 140 meters in | | 7 | diameter. | | 8 | "(h) Transmittal.—Not later than 270 days after | | 9 | the date of enactment of the National Aeronautics and | | 10 | Space Administration Transition Authorization Act of | | 11 | 2017, the Administrator shall transmit the results of the | | 12 | assessment under subsection (g) to the Committee on | | 13 | Commerce, Science, and Transportation of the Senate and | | 14 | the Committee on Science, Space, and Technology of the | | 15 | House of Representatives.". | | 16 | SEC. 512. NEAR-EARTH OBJECTS PUBLIC-PRIVATE PART- | | 17 | NERSHIPS. | | 18 | (a) Sense of Congress.—It is the sense of Con- | | 19 | gress that the Administration should seek to leverage the | | 20 | capabilities of the private sector and philanthropic organi- | | 21 | zations to the maximum extent practicable in carrying out | | 22 | the Near-Earth Object Survey Program in order to meet | | 23 | the goal of that program under section $321(d)(1)$ of the | | 24 | National Aeronautics and Space Administration Author- | | 25 | ization Act of 2005 (51 U.S.C. note prec. 71101(d)(1)). | | 1 | (b) Report.—Not later than 180 days after the date | |-----|--| | 2 | of enactment of this Act, the Administrator shall submit | | 3 | to the appropriate committees of Congress a report de- | | 4 | scribing how the Administration can expand collaborative | | 5 | partnerships to detect, track, catalogue, and categorize | | 6 | near-Earth objects. | | 7 | SEC. 513. ASSESSMENT OF SCIENCE MISSION EXTENSIONS. | | 8 | Section 30504 of title 51, United States Code, is | | 9 | amended to read as follows: | | 10 | "§ 30504. Assessment of science mission extensions | | 11 | "(a) Assessments.— | | 12 | "(1) In general.—The Administrator shall | | 13 | carry out triennial reviews within each of the Science | | 14 | divisions to assess the cost and benefits of extending | | 15 | the date of the termination of data collection for | | 16 | those missions that exceed their planned missions' | | 17. | lifetime. | | 18 | "(2) Considerations.—In conducting an as- | | 19 | sessment under paragraph (1), the Administrator | | 20 | shall consider whether and how extending missions | | 21 | impacts the start of future missions. | | 22 | "(b) Consultation and Consideration of Po- | | 23 | TENTIAL BENEFITS OF INSTRUMENTS ON MISSIONS.— | | 24 | When deciding whether to extend a mission that has an | | 25 | operational component, the Administrator shall— | | 1 | "(1) consult with any affected Federal agency; | |----|---| | 2 | and | | 3 | "(2) take into account the potential benefits of | | 4 | instruments on missions that are beyond their | | 5 | planned mission lifetime. | | 6 | "(c) Reports.—The Administrator shall submit to | | 7 | the Committee on Commerce, Science, and Transportation | | 8 | of the Senate and the Committee on Science, Space, and | | 9 | Technology of the House of Representatives, at the same | | 10 | time as the submission to Congress of the Administra- | | 11 | tion's annual budget request for each fiscal year, a report | | 12 | detailing any assessment under subsection (a) that was | | 13 | carried out during the previous year.". | | 14 | SEC. 514. STRATOSPHERIC OBSERVATORY FOR INFRARED | | 15 | ASTRONOMY. | | 16 | The Administrator may not terminate science oper- | | 17 | ations of the Stratospheric Observatory for Infrared As- | | 18 | tronomy before December 31, 2017. | | 19 | SEC. 515. RADIOISOTOPE POWER SYSTEMS. | | 20 | (a) Sense of Congress.—It is the sense of Con- | | 21 | gress that— | | 22 | (1) exploration of the outer reaches of the solar | | 23 | system is enabled by radioisotope power systems; | | 24 | (2) establishing continuity in the production of | | 25 | the material needed for radioisotope power systems | | 1 | is essential to maintaining the availability of such | |----|--| | 2 | systems for future deep space exploration missions; | | 3 | and | | 4 | (3) Federal agencies supporting the Adminis- | | 5 | tration through the production of such material | | 6 | should do so in a cost effective manner so as not to | | 7 | impose excessive reimbursement requirements on the | | 8 | Administration. | | 9 | (b) Analysis of Requirements and Risks.—The | | 10 | Director of the Office of Science and Technology Policy | | 11 | and the Administrator, in consultation with the heads of | | 12 | other Federal agencies, shall conduct an analysis of— | | 13 | (1) the requirements of the Administration for | | 14 | radioisotope power system material that is needed to | | 15 | carry out planned, high priority robotic missions in | | 16 | the solar system and other surface exploration activi- | | 17 | ties beyond low-Earth orbit; and | | 18 | (2) the risks to missions of the Administration | | 19 | in meeting those requirements, or any additional re- | | 20 | quirements, due to a lack of adequate radioisotope | | 21 | power system material. | | 22 | (c) Contents of Analysis.—The analysis con- | | 23 | ducted under subsection (b) shall— | | 1 | (1) detail the Administration's current pro- | |----|---| | 2 | jected mission requirements and associated time- | | 3 | frames for radioisotope power system material; | | 4 | (2) explain the assumptions used to determine | | 5 | the Administration's requirements for the material | | 6 | including— | | 7 | (A) the planned use of advanced therma | | 8 | conversion technology such as advanced | | 9 | thermocouples and Stirling generators and con- | | 10 | verters; and | | 11 | (B) the risks and implications of, and con- | | 12 | tingencies for, any delays or unanticipated tech- | | 13 | nical challenges affecting or related to the Δd | | 14 | ministration's mission plans for the anticipated | | 15 | use of advanced thermal conversion technology; | | 16 | (3) assess the risk to the Administration's pro- | | 17 | grams of any potential delays in achieving the sched- | | 18 | ule and milestones for planned domestic production | | 19 | of radioisotope power system material; | | 20 | (4) outline a process for meeting any additional | | 21 | Administration requirements for the material; | | 22 | (5) estimate the incremental costs required to | | 23 | increase the amount of material produced each year, | | 24 | if such an increase is needed to support additional | | 25 | Administration requirements for the material; | | 1 | (6) detail how the Administration and other | |----|---| | 2 | Federal agencies will manage, operate, and fund | | 3 | production facilities and the design and development | | 4 | of all radioisotope power systems used by the Ad- | | 5 | ministration and other Federal agencies as nec- | | 6 | essary; | | 7 | (7) specify the steps the Administration will | | 8 | take, in consultation with the Department of En- | | 9 | ergy, to preserve the infrastructure and workforce | | 10 | necessary for production of radioisotope power sys- | | 11 | tems and ensure that its reimbursements to the De- | | 12 | partment of Energy associated with such preserva- | | 13 | tion are equitable and justified; and | | 14 | (8) detail how the Administration has imple- | | 15 | mented or rejected the recommendations from the | | 16 | National Research Council's 2009 report titled "Ra- | | 17 | dioisotope Power Systems: An Imperative for Main- | | 18 | taining U.S. Leadership in Space Exploration." | | 19 | (d) REPORT TO CONGRESS.—Not later than 180 days | | 20 | after the date of enactment of this Act, the Administrator | | 21 | shall submit the results of the analysis to the appropriate | | 22 | committees of Congress. | | | . 00 | |----|---| | 1 | SEC. 516. ASSESSMENT OF MARS ARCHITECTURE. | | 2 | (a) Assessment.—The Administrator shall enter | | 3 | into an arrangement with the National Academies of | | 4 | Sciences, Engineering, and Medicine to assess— | | 5 | (1) the Administration's Mars exploration ar- | | 6 | chitecture and its responsiveness to the strategies, | | 7 | priorities, and guidelines put forward by the Na- | | 8 | tional Academies' planetary science decadal surveys | | 9 | and other relevant National Academics Mars-related | | 10 | reports; | | 11 | (2) the long-term goals of the Administration's | | 12 | Mars Exploration Program and such program's abil- | | 13 | ity to optimize the science return, given the current | | 14 | fiscal posture of the program; | | 15 | (3) the Mars exploration architecture's relation- | | 16 | ship to Mars-related activities to be undertaken by | | 17 | foreign agencies and organizations; and | | 18 | (4) the extent to which the Mars exploration ar- | | 19 | chitecture represents a reasonably balanced mission | | 20 | portfolio. | | 21 | (b) Report to Congress.—Not later than 18 | | 22 | months after the date of enactment of this Act, the Ad- | | 23 | ministrator shall submit the results of the assessment to | 24 the appropriate committees of Congress. ### 1 SEC. 517. COLLABORATION. 25 26 | _ | | |----|--| | 2 | The Administration shall continue to develop first-of | | 3 | a-kind instruments that, once proved, can be transitioned | | 4 | to other agencies for operations. Whenever responsibilitie | | 5 | for the development of sensors or for measurements are | | 6 | transferred to the Administration from another agency
 | 7 | the Administration shall seek, to the extent possible, to | | 8 | be reimbursed for the assumption of such responsibilities | | 9 | TITLE VI—AERONAUTICS | | 10 | SEC. 601. SENSE OF CONGRESS ON AERONAUTICS. | | 11 | It is the sense of Congress that— | | 12 | (1) a robust aeronautics research portfolio wil | | 13 | help maintain the United States status as a leader | | 14 | in aviation, enhance the competitiveness of the | | 15 | United States in the world economy, and improve | | 16 | the quality of life of all citizens; | | 17 | (2) aeronautics research is essential to the Ad- | | 18 | ministration's mission, continues to be an important | | 19 | core element of the Administration's mission, and | | 20 | should be supported; | | 21 | (3) the Administrator should coordinate and | | 22 | consult with relevant Federal agencies and the pri- | | 23 | vate sector to minimize duplication of efforts and le- | | 24 | verage resources; and | | | | (4) carrying aeronautics research to a level of maturity that allows the Administration's research - 1 results to be transferred to the users, whether pri- - 2 vate or public sector, is critical to their eventual - 3 adoption. ### 4 SEC. 602. TRANSFORMATIVE AERONAUTICS RESEARCH. - 5 It is the sense of Congress that the Administrator - 6 should look strategically into the future and ensure that - 7 the Administration's Center personnel are at the leading - 8 edge of aeronautics research by encouraging investigations - 9 into the early-stage advancement of new processes, novel - 10 concepts, and innovative technologies that have the poten- - 11 tial to meet national aeronautics needs. ## 12 SEC. 603. HYPERSONIC RESEARCH. - 13 (a) ROADMAP FOR HYPERSONIC RESEARCH.—Not - 14 later than 1 year after the date of enactment of this Act, - 15 the Administrator, in consultation with the heads of other - 16 relevant Federal agencies, shall develop and submit to the - 17 appropriate committees of Congress a research and devel- - 18 opment roadmap for hypersonic aircraft research. - 19 (b) Objective.—The objective of the roadmap is to - 20 explore hypersonic science and technology using air- - 21 breathing propulsion concepts, through a mix of theo- - 22 retical work, basic and applied research, and development - 23 of flight research demonstration vehicles. F-1---- 0 0047 (44:00 - | 1 | (e) Contents.—The roadmap shall recommend ap- | |----|--| | 2 | propriate Federal agency contributions, coordination ef- | | 3 | forts, and technology milestones. | | 4 | SEC. 604. SUPERSONIC RESEARCH. | | 5 | (a) FINDINGS.—Congress finds that— | | 6 | (1) the ability to fly commercial aircraft over | | 7 | land at supersonic speeds without adverse impacts | | 8 | on the environment or on local communities could | | 9 | open new global markets and enable new transpor- | | 10 | tation capabilities; and | | 11 | (2) continuing the Administration's research | | 12 | program is necessary to assess the impact in a rel- | | 13 | evant environment of commercial supersonic flight | | 14 | operations and provide the basis for establishing ap- | | 15 | propriate sonic boom standards for such flight oper- | | 16 | ations. | | 17 | (b) Roadmap for Supersonic Research.— | | 18 | (1) IN GENERAL.—Not later than 1 year after | | 19 | the date of enactment of this Act, the Administrator | | 20 | shall develop and submit to the appropriate commit- | | 21 | tees of Congress a roadmap that allows for flexible | | 22 | funding profiles for supersonic aeronautics research | | 23 | and development. | | 24 | (2) Objective.—The objective of the roadmap | | 25 | is to develop and demonstrate in a relevant environ- | | 1 | ment, airframe and propulsion technologies to mini- | |----|--| | 2 | mize the environmental impact, including noise, of | | 3 | supersonic overland flight in an efficient and eco- | | 4 | nomical manner. | | 5 | (3) Contents.—The roadmap shall include— | | 6 | (A) the baseline research as embodied by | | 7 | the Administration's existing research on super- | | 8 | sonic flight; | | 9 | (B) a list of specific technological, environ- | | 10 | mental, and other challenges that must be over- | | 11 | come to minimize the environmental impact, in- | | 12 | cluding noise, of supersonic overland flight; | | 13 | (C) a research plan to address the chal- | | 14 | lenges under subparagraph (B), including a | | 15 | project timeline for accomplishing relevant re- | | 16 | search goals; | | 17 | (D) a plan for coordination with stake- | | 18 | holders, including relevant government agencies | | 19 | and industry; and | | 20 | (E) a plan for how the Administration will | | 21 | ensure that sonic boom research is coordinated | | 22 | as appropriate with relevant Federal agencies. | | 23 | SEC. 605. ROTORCRAFT RESEARCH. | | 24 | (a) ROADMAP FOR ROTORCRAFT RESEARCH.—Not | | 25 | later than 1 year after the date of enactment of this Act, | | 1 | the Administrator, in consultation with the heads of other | |--|---| | 2 | relevant Federal agencies, shall prepare and submit to the | | 3 | appropriate committees of Congress a roadmap for re- | | 4 | search relating to rotorcraft and other runway-inde- | | 5 | pendent air vehicles. | | 6 | (b) Objective.—The objective of the roadmap is to | | 7 | develop and demonstrate improved safety, noise, and envi- | | 8 | ronmental impact in a relevant environment. | | 9 | (c) Contents.—The roadmap shall include specific | | 10 | goals for the research, a timeline for implementation, | | 11 | metrics for success, and guidelines for collaboration and | | 12 | coordination with industry and other Federal agencies. | | | MIDT TO VILL OD A CIT MECHANICE OCY | | 13 | TITLE VII—SPACE TECHNOLOGY | | 1314 | SEC. 701. SPACE TECHNOLOGY INFUSION. | | | | | 14 | SEC. 701. SPACE TECHNOLOGY INFUSION. | | 14
15
16 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) SENSE OF CONGRESS ON SPACE TECHNOLOGY.— | | 14
15
16 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is crit- | | 14
15
16
17 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is critical— | | 14
15
16
17
18 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is critical— (1) to developing technologies and capabilities | | 14
15
16
17
18
19 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is critical— (1) to developing technologies and capabilities that will make the Administration's core missions | | 14
15
16
17
18
19 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is critical— (1) to developing technologies and capabilities that will make the Administration's core missions more affordable and more reliable; | | 14
15
16
17
18
19
20
21 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) Sense of Congress on Space Technology.— It is the sense of Congress that space technology is critical— (1) to developing technologies and capabilities that will make the Administration's core missions more affordable and more reliable; (2) to enabling a new class of Administration | | 14
15
16
17
18
19
20
21
22 | SEC. 701. SPACE TECHNOLOGY INFUSION. (a) SENSE OF CONGRESS ON SPACE TECHNOLOGY.— It is the sense of Congress that space technology is critical— (1) to developing technologies and capabilities that will make the Administration's core missions more affordable and more reliable; (2) to enabling a new class of Administration missions beyond low-Earth orbit; and | - 1 (b) Sense of Congress on Propulsion Tech-2 Nology.—It is the sense of Congress that advancing pro- - 3 pulsion technology would improve the efficiency of trips - 4 to Mars and could shorten travel time to Mars, reduce - 5 astronaut health risks, and reduce radiation exposure, - 6 consumables, and mass of materials required for the jour- - 7 ney. - 8 (c) Policy.—It is the policy of the United States - 9 that the Administrator shall develop technologies to sup- - 10 port the Administration's core missions, as described in - 11 section 2(3) of the National Aeronautics and Space Ad- - 12 ministration Authorization Act of 2010 (42 U.S.C. - 13 18301(3)), and support sustained investments in early - 14 stage innovation, fundamental research, and technologies - 15 to expand the boundaries of the national aerospace enter- - 16 prise. - 17 (d) Propulsion Technologies.—A goal of propul- - 18 sion technologies developed under subsection (c) shall be - 19 to significantly reduce human travel time to Mars. - 20 SEC. 702. SPACE TECHNOLOGY PROGRAM. - 21 (a) Space Technology Program ΛυτηοRized.— - 22 The Administrator shall conduct a space technology pro- - 23 gram (referred to in this section as the "Program") to - 24 research and develop advanced space technologies that | 1 | could deliver innovative solutions across the Administra- | |----|---| | 2 | tion's
space exploration and science missions. | | 3 | (b) Considerations.—In conducting the Program, | | 4 | the Administrator shall consider— | | 5 | (1) the recommendations of the National Acad- | | 6 | emies' review of the Administration's Space Tech- | | 7 | nology roadmaps and priorities; and | | 8 | (2) the applicable enabling aspects of the step- | | 9 | ping stone approach to exploration under section | | 10 | 70504 of title 51, United States Code. | | 11 | (c) REQUIREMENTS.—In conducting the Program, | | 12 | the Administrator shall— | | 13 | (1) to the extent practicable, use a competitive | | 14 | process to select research and development projects | | 15 | (2) to the extent practicable and appropriate | | 16 | use small satellites and the Administration's sub- | | 17 | orbital and ground-based platforms to demonstrate | | 18 | space technology concepts and developments; and | | 19 | (3) as appropriate, partner with other Federal | | 20 | agencies, universities, private industry, and foreign | | 21 | countries. | | 22 | (d) Small Business Programs.—The Adminis- | | 23 | trator shall organize and manage the Administration's | | 24 | Small Business Innovation Research Program and Small | | 1 | Business Technology Transfer Program within the Pro- | |----|--| | 2 | gram. | | 3 | (e) Nonduplication Certification.—The Admin- | | 4 | istrator shall submit a budget for each fiscal year, as | | 5 | transmitted to Congress under section 1105(a) of title 31, | | 6 | United States Code, that avoids duplication of projects, | | 7 | programs, or missions conducted by Program with other | | 8 | projects, programs, or missions conducted by another of- | | 9 | fice or directorate of the Administration. | | 10 | (f) Collaboration, Coordination, and Align- | | 11 | MENT — | | 12 | (1) IN GENERAL.—The Administrator shall— | | 13 | (Λ) ensure that the Administration's | | 14 | projects, programs, and activities in support of | | 15 | technology research and development of ad- | | 16 | vanced space technologies are fully coordinated | | 17 | and aligned; | | 18 | (B) ensure that the results the projects, | | 19 | programs, and activities under subparagraph | | 20 | (Λ) are shared and leveraged within the Admin- | | 21 | istration; and | | 22 | (C) ensure that the organizational respon- | | 23 | sibility for research and development activities | | 24 | in support of human space exploration not initi- | | 1 | ated as of the date of enactment of this Act is | |----|---| | 2 | established on the basis of a sound rationale. | | 3 | (2) Sense of congress.—It is the sense of | | 4 | Congress that projects, programs, and missions | | 5 | being conducted by the Human Exploration and Op- | | 6 | erations Mission Directorate in support of research | | 7 | and development of advanced space technologies and | | 8 | systems focusing on human space exploration should | | 9 | continue in that Directorate. | | 10 | (g) REPORT.—Not later than 180 days after the date | | 11 | of enactment of this Act, the Administrator shall provide | | 12 | to the appropriate committees of Congress a report— | | 13 | (1) comparing the Administration's space tech- | | 14 | nology investments with the high-priority technology | | 15 | areas identified by the National Academies in the | | 16 | National Research Council's report on the Adminis- | | 17 | tration's Space Technology Roadmaps; and | | 18 | (2) including— | | 19 | (Λ) identification of how the Administra- | | 20 | tion will address any gaps between the agency's | | 21 | investments and the recommended technology | | 22 | areas, including a projection of funding require- | | 23 | ments; and | | 24 | (B) identification of the rationale described | | 25 | in subsection (f)(1)(C). | | 1 | (h) Annual Report.—The Administrator shall in- | |----|---| | 2 | clude in the Administration's annual budget request for | | 3 | each fiscal year the rationale for assigning organizational | | 4 | responsibility for, in the year prior to the budget fiscal | | 5 | year, each initiated project, program, and mission focused | | 6 | on research and development of advanced technologies for | | 7 | human space exploration. | | 8 | TITLE VIII—MAXIMIZING | | 9 | EFFICIENCY | | 10 | Subtitle A—Agency Information | | 11 | Technology and Cybersecurity | | 12 | SEC. 811. INFORMATION TECHNOLOGY GOVERNANCE. | | 13 | (a) In General.—The Administrator shall, in a | | 14 | manner that reflects the unique nature of NASA's mission | | 15 | and expertise— | | 16 | (1) ensure the NASA Chief Information Officer, | | 17 | Mission Directorates, and Centers have appropriate | | 18 | roles in the management, governance, and oversight | | 19 | processes related to information technology oper- | | 20 | ations and investments and information security pro- | | 21 | grams for the protection of NASA systems; | | 22 | (2) ensure the NASA Chief Information Officer | | 23 | has the appropriate resources and insight to overseo | | 24 | NASA information technology and information secu- | | 25 | rity operations and investments; | | 1 | (3) provide an information technology program | |----|--| | 2 | management framework to increase the efficiency | | 3 | and effectiveness of information technology invest- | | 4 | ments, including relying on metrics for identifying | | 5 | and reducing potential duplication, waste, and cost; | | 6 | (4) improve the operational linkage between the | | 7 | NASA Chief Information Officer and each NASA | | 8 | mission directorate, center, and mission support of- | | 9 | fice to ensure both agency and mission needs are | | 10 | considered in agency-wide information technology | | 11 | and information security management and oversight; | | 12 | (5) review the portfolio of information tech- | | 13 | nology investments and spending, including informa- | | 14 | tion technology-related investments included as part | | 15 | of activities within NASA mission directorates that | | 16 | may not be considered information technology, to en- | | 17 | sure investments are recognized and reported appro- | | 18 | priately based on guidance from the Office of Man- | | 19 | agement and Budget; | | 20 | (6) consider appropriate revisions to the char- | | 21 | ters of information technology boards and councils | | 22 | that inform information technology investment and | | 23 | operation decisions; and | | | | | 1 | (7) consider whether the NASA Chief Informa- | |----|---| | 2 | tion Officer should have a seat on any boards or | | 3 | councils described in paragraph (6). | | 4 | (b) GAO STUDY.— | | 5 | (1) STUDY.—The Comptroller General of the | | 6 | United States shall conduct a study of the effective- | | 7 | ness of the Administration's Information Technology | | 8 | Governance in ensuring information technology re- | | 9 | sources are aligned with agency missions and are | | 10 | cost effective and secure. | | 11 | (2) Contents.—The study shall include an as- | | 12 | sessment of— | | 13 | (A) the resources available for overseeing | | 14 | Administration-wide information technology op- | | 15 | erations, investments, and security measures | | 16 | and the NASA Chief Information Officer's visi- | | 17 | bility and involvement into information tech- | | 18 | nology oversight and access to those resources; | | 19 | (B) the effectiveness and challenges of the | | 20 | Administration's information technology struc- | | 21 | ture, decision making processes and authorities, | | 22 | including impacts on its ability to implement in- | | 23 | formation security; and | | 24 | (C) the impact of NASA Chief Information | | 25 | Officer approval authority over information | | 1 | technology investments that exceed a defined | |----|---| | 2 | monetary threshold, including any potential im- | | 3 | pacts of such authority on the Administration's | | 4 | missions, flights programs and projects, re- | | 5 | search activities, and Center operations. | | 6 | (3) REPORT.—Not later than 1 year after the | | 7 | date of enactment of this Act, the Comptroller Gen- | | 8 | eral shall submit to the appropriate committees of | | 9 | Congress a report detailing the results of the study | | 10 | under paragraph (1), including any recommenda- | | 11 | tions. | | 12 | SEC. 812. INFORMATION TECHNOLOGY STRATEGIC PLAN. | | 13 | (a) In General.—Subject to subsection (b), the Ad- | | 14 | ministrator shall develop an information technology stra- | | 15 | tegic plan to guide NASA information technology manage- | | 16 | ment and strategic objectives. | | 17 | (b) REQUIREMENTS.—In developing the strategic | | 18 | plan, the Administrator shall ensure that the strategic | | 19 | plan addresses— | | 20 | (1) the deadline under section 306(a) of title 5, | | 21 | United States Code; and | | 22 | (2) the requirements under section 3506 of title | | 23 | 44, United States Code. | | | | | 1 | (c) Contents.—The strategic plan shall address, in | |----|---| | 2 | a manner that reflects the unique nature of NASA's mis- | | 3 | sion and expertise— | | 4 | (1) near and long-term goals and objectives for | | 5 | leveraging information technology; | | 6 | (2) a plan for how NASA will submit to Con- | | 7 | gress of a list of information technology projects, in- | | 8 | cluding completion dates and risk level in accordance | | 9 | with guidance from the Office of Management and | | 10 | Budget; | | 11 | (3) an implementation overview for an agency- | | 12 | wide approach to information technology investments | | 13 | and operations, including reducing barriers to cross- | | 14 | center
collaboration; | | 15 | (4) coordination by the NASA Chief Informa- | | 16 | tion Officer with centers and mission directorates to | | 17 | ensure that information technology policies are effec- | | 18 | tively and efficiently implemented across the agency; | | 19 | (5) a plan to increase the efficiency and effec- | | 20 | tiveness of information technology investments, in- | | 21 | cluding a description of how unnecessarily duplica- | | 22 | tive, wasteful, legacy, or outdated information tech | | 23 | nology across NASA will be identified and elimi | | 2 | 4 nated, and a schedule for the identification and | | 2. | elimination of such information technology; | | 1 | (6) a plan for improving the information secu- | |----|---| | 2 | rity of agency information and agency information | | 3 | systems, including improving security control assess- | | 4 | ments and role-based security training of employees; | | 5 | and | | 6 | (7) submission by NASA to Congress of infor- | | 7 | mation regarding high risk projects and | | 8 | cybersecurity risks. | | 9 | (d) Congressional Oversight.—The Adminis- | | 10 | trator shall submit to the appropriate committees of Con- | | 11 | gress the strategic plan under subsection (a) and any up- | | 12 | dates thereto. | | 13 | SEC. 813. CYBERSECURITY. | | 14 | (a) FINDING.—Congress finds that the security of | | 15 | NASA information and information systems is vital to the | | 16 | success of the mission of the agency. | | 17 | (b) Information Security Plan.— | | 18 | (1) IN GENERAL.—Not later than 1 year after | | 19 | the date of enactment of this Act, the Administrator | | 20 | shall implement the information security plan devel- | | 21 | oped under paragraph (2) and take such further ac- | | 22 | tions as the Administrator considers necessary to | | 23 | improve the information security system in accord | | 24 | ance with this section. | | 1 | (2) Information security Plan.—Subject to | |----|--| | 2 | paragraphs (3) and (4), the Administrator shall de- | | 3 | velop an agency-wide information security plan to | | 4 | enhance information security for NASA information | | 5 | and information infrastructure. | | 6 | (3) REQUIREMENTS.—In developing the plan | | 7 | under paragraph (2), the Administrator shall ensure | | 8 | that the plan— | | 9 | (Λ) reflects the unique nature of NAS Λ 's | | 10 | mission and expertise; | | 11 | (B) is informed by policies, standards, | | 12 | guidelines, and directives on information secu- | | 13 | rity required for Federal agencies; | | 14 | (C) is consistent with the standards and | | 15 | guidelines under section 11331 of title 40, | | 16 | United States Code; and | | 17 | (D) meets applicable National Institute of | | 18 | Standards and Technology information security | | 19 | standards and guidelines. | | 20 | (4) Contents.—The plan shall address— | | 21 | (A) an overview of the requirements of the | | 22 | information security system; | | 23 | (B) an agency-wide risk management | | 24 | framework for information security; | | | | | 1 | (C) a description of the information secu | |----|--| | 2 | rity system management controls and common | | 3 | controls that are necessary to ensure compli- | | 4 | ance with information security-related require- | | 5 | ments; | | 6 | (D) an identification and assignment of | | 7 | roles, responsibilities, and management commit- | | 8 | ment for information security at the agency; | | 9 | (E) coordination among organizational en- | | 10 | tities, including between each center, facility, | | 11 | mission directorate, and mission support office, | | 12 | and among agency entities responsible for dif- | | 13 | ferent aspects of information security; | | 14 | (F) the need to protect the information se- | | 15 | curity of mission-critical systems and activities | | 16 | and high-impact and moderate-impact informa- | | 17 | tion systems; and | | 18 | (G) a schedule of frequent reviews and up- | | 19 | dates, as necessary, of the plan. | | 20 | SEC. 814. SECURITY MANAGEMENT OF FOREIGN NATIONAL | | 21 | ACCESS. | | 22 | The Administrator shall notify the appropriate com- | | 23 | mittees of Congress when the agency has implemented the | | 24 | information technology security recommendations from | | 25 | the National Academy of Public Administration on foreign | | 1 national access management, based on reports from Janu- | |---| | 2 ary 2014 and March 2016. | | 3 SEC. 815. CYBERSECURITY OF WEB APPLICATIONS. | | 4 Not later than 180 days after the date of enactment | | 5 of this Act, the Administrator shall, in a manner that re- | | 6 flects the unique nature of NASA's mission and exper- | | 7 tise— | | 8 (1) develop a plan, including such actions and | | 9 milestones as are necessary, to fully remediate secu- | | 10 rity vulnerabilities of NASA web applications within | | a timely fashion after discovery; and | | (2) provide an update on its plan to implement | | the recommendation from the NASA Inspector Gen- | | eral in the audit report dated July 10, 2014, (IG- | | 15 14-023) to remove from the Internet or otherwise | | secure all NASA web applications in development or | | 17 testing mode. | | 18 Subtitle B—Collaboration Among | | Mission Directorates and Other | | 20 Matters | | 21 SEC. 821. COLLABORATION AMONG MISSION DIREC- | | 22 TORATES. | | The Administrator shall encourage an interdiscipli- | | 24 nary approach among all NASA mission directorates and | | 25 divisions, whenever appropriate, for projects or missions— | | 1 | (1) to improve coordination, and encourage col- | |----|--| | 2 | laboration and early planning on scope; | | 3 | (2) to determine areas of overlap or alignment; | | 4 | (3) to find ways to leverage across divisional | | 5 | perspectives to maximize outcomes; and | | 6 | (4) to be more efficient with resources and | | 7 | funds. | | 8 | SEC. 822. NASA LAUNCH CAPABILITIES COLLABORATION. | | 9 | (a) FINDINGS.—Congress makes the following find- | | 10 | ings: | | 11 | (1) The Launch Services Program is respon- | | 12 | sible for the acquisition, management, and technical | | 13 | oversight of commercial launch services for NASA's | | 14 | science and robotic missions. | | 15 | (2) The Commercial Crew Program is respon- | | 16 | sible for the acquisition, management, and technical | | 17 | oversight of commercial crew transportation systems. | | 18 | (3) The Launch Services Program and Com- | | 19 | mercial Crew Program have worked together to gain | | 20 | the contracted | | 21 | that are common to both | | 22 | | | 23 | | | 2 | history of oversight of 12 different launch vehicles | | 2 | 5 and over 80 launches. | | 1 | (5) Co-location of the Launch Services Program | |----|--| | 2 | and Commercial Crew Program has enabled the | | 3 | Commercial Crew Program to efficiently obtain the | | 4 | launch vehicle technical expertise of and provide en- | | 5 | gineering and analytical support to the Commercial | | 6 | Crew Program. | | 7 | (b) Sense of Congress.—It is the sense of Con- | | 8 | gress that— | | 9 | (1) the Launch Services Program and Commer- | | 0 | cial Crew Program each benefit from communication | | 1 | and coordination of launch manifests, technical in- | | 2 | formation, and common launch vehicle insight be- | | 3 | tween the programs; and | | 4 | (2) such communication and coordination is en- | | 5 | abled by the co-location of the programs. | | 6 | (c) In General.—The Administrator shall pursue a | | 7 | strategy for acquisition of crewed transportation services | | 8 | and non-crewed launch services that continues to enhance | | 9 | communication, collaboration, and coordination between | | 20 | the Launch Services Program and the Commercial Crew | | 21 | Program. | | 22 | SEC. 823. DETECTION AND AVOIDANCE OF COUNTERFEIT | | 23 | PARTS. | | 24 | (a) FINDINGS.—Congress makes the following find- | | 25 | ings: | | | 110 | |----|---| | 1 | (1) A 2012 investigation by the Committee on | | 2 | Armed Services of the Senate of counterfeit elec- | | 3 | tronic parts in the Department of Defense supply | | 4 | chain from 2009 through 2010 uncovered 1,800 | | 5 | cases and over 1,000,000 counterfeit parts and ex- | | 6 | posed the threat such counterfeit parts pose to serv- | | 7 | ice members and national security. | | | (2) Since 2010, the Comptroller General of the | | 8 | United States has identified in 3 separate reports | | 9 | the risks and challenges associated with counterfeit | | 10 | parts and counterfeit prevention at both the Depart- | | 11 | ment of Defense and NASA, including inconsistent | | 12 | definitions of counterfeit parts, poorly targeted qual- | | 13 | ity control practices, and potential barriers to im- | | 14 | | | 15 | provements to these practices. (b) Sense of Congress.—It is the sense of Con- | | 16 | (b) SENSE OF CONGRESS. 12 22 (b) SENSE OF CONGRESS. 12 22 (c) | | 17 | gress that the presence of counterfeit electronic parts in | | 18 | the NASA supply chain poses a danger to United States | | 19 | government astronauts, crew, and other personnel and a | | 20 | risk to the agency overall. | | 21 | (c) REGULATIONS.— | | 22 | (1) In GENERAL.—Not later than 270 days | | 23 | after the date of enactment of this Act, the Adminis- | | 24 | trator shall revise the NASA Supplement to the | | 25 | Federal Acquisition Regulation to
improve the detec- | | 1 | tion and avoidance of counterfeit electronic parts in | |----|---| | 2 | the supply chain. | | 3 | (2) Contractor responsibilities.—In revis- | | 4 | ing the regulations under paragraph (1), the Admin- | | 5 | istrator shall— | | 6 | (A) require each covered contractor— | | 7 | (i) to detect and avoid the use or in- | | 8 | clusion of any counterfeit parts in elec- | | 9 | tronic parts or products that contain elec- | | 10 | tronic parts; | | 11 | (ii) to take such corrective actions as | | 12 | the Administrator considers necessary to | | 13 | remedy the use or inclusion described in | | 14 | clause (i); and | | 15 | (iii) including a subcontractor, to no- | | 16 | tify the applicable NASA contracting offi- | | 17 | cer not later than 30 calendar days after | | 18 | the date the covered contractor becomes | | 19 | aware, or has reason to suspect, that any | | 20 | end item, component, part or material con- | | 21 | tained in supplies purchased by NASA, or | | 22 | purchased by a covered contractor or sub- | | 23 | contractor for delivery to, or on behalf of, | | 24 | NASA, contains a counterfeit electronic | | 1 | part or suspect counterfeit electronic part; | |----|---| | 2 | and | | 3 | (B) prohibit the cost of counterfeit elec- | | 4 | tronic parts, suspect counterfeit electronic | | 5 | parts, and any corrective action described under | | 6 | subparagraph (A)(ii) from being included as al- | | 7 | lowable costs under agency contracts, unless— | | 8 | (i)(I) the covered contractor has an | | 9 | operational system to detect and avoid | | 10 | counterfeit electronic parts and suspect | | 11 | counterfeit electronic parts that has been | | 12 | reviewed and approved by NASA or the | | 13 | Department of Defense; and | | 14 | (II) the covered contractor has | | 15 | provided the notice under subpara- | | 16 | graph (Λ)(iii); or | | 17 | (ii) the counterfeit electronic parts or | | 18 | suspect counterfeit electronic parts were | | 19 | provided to the covered contractor as Gov- | | 20 | ernment property in accordance with part | | 21 | 45 of the Federal Acquisition Regulation. | | 22 | (3) Suppliers of electronic parts.—In re- | | 23 | vising the regulations under paragraph (1), the Ad- | | 24 | ministrator shall— | | • | |------| | | | 9 | | 11 | | l- | |)- | |)- | | ŧa. | | ts | | 01, | | | | | | 9IJ- | | OI, | | 011- | | 011- | | | | 1 | than a source described in subparagraph | |----|--| | 2 | (A); | | 3 | (C) establish qualification requirements, | | 4 | consistent with the requirements of section | | 5 | 2319 of title 10, United States Code, pursuant | | 6 | to which NASA may identify suppliers that | | 7 | have appropriate policies and procedures in | | 8 | place to detect and avoid counterfeit electronic | | 9 | parts and suspect counterfeit electronic parts; | | 10 | and | | 11 | (D) authorize a covered contractor, includ- | | 12 | ing a subcontractor, to identify and use addi- | | 13 | tional suppliers beyond those identified under | | 14 | subparagraph (C) if— | | 15 | (i) the standards and processes for | | 16 | identifying such suppliers comply with es- | | 17 | tablished industry standards; | | 18 | (ii) the covered contractor assumes re- | | 19 | sponsibility for the authenticity of parts | | 20 | provided by such suppliers under para- | | 21 | graph (2); and | | 22 | (iii) the selection of such suppliers is | | 23 | subject to review and audit by NASA. | | 24 | (d) Definitions.—In this section: | | 1 | (1) COVERED CONTRACTOR.—The term "cov- | |----|---| | 2 | ered contractor" means a contractor that supplies | | 3 | an electronic part, or a product that contains an | | 4 | electronic part, to NASA. | | 5 | (2) ELECTRONIC PART.—The term "electronic | | 6 | part" means a discrete electronic component, includ- | | 7 | ing a microcircuit, transistor, capacitor, resistor, or | | 8 | diode, that is intended for use in a safety or mission | | 9 | critical application. | | 10 | SEC. 824. EDUCATION AND OUTREACH. | | 11 | (a) Sense of Congress.—It is the sense of Con- | | 12 | gress that— | | 13 | (1) United States competitiveness in the 21st | | 14 | century requires engaging the science, technology, | | 15 | engineering, and mathematics (referred to in this | | 16 | section as "STEM") talent in all States; | | 17 | (2) the Administration is uniquely positioned to | | 18 | educate and inspire students and the broader public | | 19 | on STEM subjects and careers; | | 20 | | | 21 | munication Offices, Mission Directorates, and Cen- | | 22 | ters have been effective in delivering educational | | 23 | | | 24 | istration scientists and engineers in the Administra- | | 2: | tion's education and outreach activities; | | 1 | (4) the Administration's education and outreach | |----|--| | 2 | programs, including the Experimental Program to | | 3 | Stimulate Competitive Research (EPSCoR) and the | | 4 | Space Grant College and Fellowship Program, re- | | 5 | flect the Administration's successful commitment to | | 6 | growing and diversifying the national science and | | 7 | engineering workforce; and | | 8 | (5) in order to grow and diversify the Nation's | | 9 | engineering workforce, it is vital for the Administra- | | 10 | tion to bolster programs, such as High Schools | | 11 | United with NASA to Create Hardware (HUNCH) | | 12 | program, that conduct outreach activities to under- | | 13 | served rural communities, vocational schools, and | | 14 | tribal colleges and universities and encourage new | | 15 | participation in the STEM workforce. | | 16 | (b) CONTINUATION OF EDUCATION AND OUTREACH | | 17 | ACTIVITIES AND PROGRAMS.— | | 18 | (1) In General.—The Administrator shall con- | | 19 | tinue engagement with the public and education op- | | 20 | portunities for students via all the Administration's | | 21 | mission directorates to the maximum extent prac- | | 22 | ticable. | | 23 | (2) REPORT.—Not later than 60 days after the | | 24 | date of enactment of this Act, the Administrator | | 25 | shall submit to the appropriate committees of Con- | | 1 gress a report on the Administration's near-term | |---| | 2 outreach plans for advancing space law education. | | 3 SEC. 825. LEVERAGING COMMERCIAL SATELLITE SERV- | | 4 ICING CAPABILITIES ACROSS MISSION DI- | | 5 RECTORATES. | | 6 (a) FINDINGS.—Congress makes the following find- | | 7 ings: | | 8 (1) Refueling and relocating aging satellites to | | 9 extend their operational lifetimes is a capacity that | | NASA will substantially benefit from and is impor- | | tant for lowering the costs of ongoing scientific, na- | | tional security, and commercial satellite operations. | | 13 (2) The technologies involved in satellite serv- | | 14 icing, such as dexterous robotic arms, propellant | | transfer systems, and solar electric propulsion, are | | all critical capabilities to support a human explo- | | 17 ration mission to Mars. | | 18 (b) Sense of Congress.—It is the sense of Con- | | 19 gress that— | | 20 (1) satellite servicing is a vital capability that | | will bolster the capacity and affordability of NASA's | | ongoing scientific and human exploration operations | | while simultaneously enhancing the ability of domes- | | 24 tic companies to compete in the global marketplace; | | 25 and | | 1 | (2) future NASA satellites and spacecraft | |-------|---| | 2 | across mission directorates should be constructed in | | 3 | a manner that allows for servicing in order to maxi- | | 4 | mize operational longevity and affordability. | | 5 | (c) LEVERAGING OF CAPABILITIES.—The Adminis- | | 6 tra | tor shall— | | 7 | (1) identify orbital assets in both the Science | | 8 | Mission Directorate and the Human Exploration | | 9 | and Operations Mission Directorate that could ben- | | 10 | efit from satellite servicing-related technologies; and | | 11 | (2) work across all NASA mission directorates | | 12 | to evaluate opportunities for the private sector to | | 13 | perform such services or advance technical capabili- | | 14 | ties by leveraging the technologies and techniques | | 15 | developed by NASA programs and other industry | | 16 | programs. | | 17 s | EC. 826. FLIGHT OPPORTUNITIES. | | 18 | (a) DEVELOPMENT OF PAYLOADS.— | | 19 | (1) IN GENERAL.—In order to conduct nec- | | 20 | essary research, the Administrator shall continue | | 21 | and, as the Administrator considers appropriate, ex- | | 22 | pand the development of technology payloads for— | | 23 | (A) scientific research; and | | 24 | (B) investigating new or improved capabili- | | 25 | ties. | | 1 | (2) FUNDS.—For the purpose of carrying out | |----|---| | 1 | paragraph (1), the Administrator shall make funds | | 2 | | | 3 | available for— | | 4 | (A) flight testing; | | 5 | (B) payload development; and | | 6 | (C) hardware related to subparagraphs (Λ) | | 7 | and (B). | | 8 | (b) REAFFIRMATION OF POLICY.—Congress reaf- | | 9 | firms that the Administrator should provide flight oppor- | | 10 | tunities for payloads to microgravity environments and | | 11 | suborbital altitudes as authorized by section 907 of the | | 12 | National Aeronautics and Space Administration Author- | | 13 | ization Act of 2010 (42 U.S.C. 18405). | | 14 | SEC. 827. SENSE OF CONGRESS ON SMALL CLASS LAUNCH | | 15 | MISSIONS. | | 16 | It is the sense of Congress that— | | 17 | (1) Venture Class Launch Services contracts | | 18 | awarded under the Launch Services Program will | | 19 | expand opportunities for future dedicated launches | | 20 | and a contract of the small satellites and
small or- | | 21 | bital science missions; and | | 22 | 2 (2) principal investigator-led small orbital | | 2 | science missions, including CubeSat class, Small Ex- | | 2 | 4 plorer (SMEX) class, and Venture class, offer valu- | | | 5 able opportunities to advance science at low cost, | | 1 | train the next generation of scientists and engineers, | |----|--| | 2 | and enable participants to acquire skills in systems | | 3 | engineering and systems integration that are critical | | 4 | to maintaining the Nation's leadership in space and | | 5 | to enhancing United States innovation and competi- | | 6 | tiveness abroad. | | 7 | SEC. 828. BASELINE AND COST CONTROLS. | | 8 | Section 30104(a)(1) of title 51, United States Code, | | 9 | is amended by striking "Procedural Requirements | | 10 | 7120.5c, dated March 22, 2005" and inserting "Proce- | | 11 | dural Requirements 7120.5E, dated August 14, 2012". | | 12 | SEC. 829. COMMERCIAL TECHNOLOGY TRANSFER PRO- | | 13 | GRAM. | | 14 | Section 50116(a) of title 51, United States Code, is | | 15 | amended by inserting ", while protecting national secu- | | 16 | rity" after "research community". | | 17 | SEC. 830. AVOIDING ORGANIZATIONAL CONFLICTS OF IN- | | 18 | TEREST IN MAJOR ADMINISTRATION ACQUI- | | 19 | SITION PROGRAMS. | | 20 | (a) REVISED REGULATIONS REQUIRED.—Not later | | 21 | than 270 days after the date of enactment of this Act, | | 22 | | | 23 | ment to the Federal Acquisition Regulation to provide uni- | | 24 | 0 | | 25 | organizational conflicts of interest by contractors in major | | 1 | acquisition programs in order to address the elements | |----|---| | | | | 2 | identified in subsection (b). | | 3 | (b) Elements.—The revised regulations under sub- | | 4 | section (a) shall, at a minimum—- | | 5 | (1) address organizational conflicts of interest | | 6 | that could potentially arise as a result of—- | | 7 | (A) lead system integrator contracts on | | 8 | major acquisition programs and contracts that | | 9 | follow lead system integrator contracts on such | | 10 | programs, particularly contracts for production; | | 11 | (B) the ownership of business units per- | | 12 | | | 13 | | | 14 | | | 15 | major acquisition programs by contractors who | | 16 | simultaneously own business units competing to | | 1′ | perform as either the prime contractor or the | | 1 | 8 supplier of a major subsystem or component for | | 1 | | | 2 | 0 (C) the award of major subsystem con- | | 2 | tracts by a prime contractor for a major acqui- | | 2 | sition program to business units or other affili- | | 2 | ates of the same parent corporate entity, and | | 2 | particularly the award of subcontracts for soft- | | 1 | ware integration or the development of a pro- | |----|---| | 2 | prietary software system architecture; or | | 3 | (D) the performance by, or assistance of, | | 4 | contractors in technical evaluations on major | | 5 | acquisition programs; | | 6 | (2) require the Administration to request advice | | 7 | on systems architecture and systems engineering | | 8 | matters with respect to major acquisition programs | | 9 | from objective sources independent of the prime con- | | 10 | tractor; | | 11 | (3) require that a contract for the performance | | 12 | of systems engineering and technical assistance | | 13 | functions for a major acquisition program contains | | 14 | a provision prohibiting the contractor or any affiliate | | 15 | of the contractor from participating as a prime con- | | 16 | tractor or a major subcontractor in the development | | 17 | of a system under the program; and | | 18 | (4) establish such limited exceptions to the re- | | 19 | quirement in paragraphs (2) and (3) as the Admin- | | 20 | istrator considers necessary to ensure that the Ad- | | 21 | ministration has continued access to advice on sys- | | 22 | tems architecture and systems engineering matters | | 23 | from highly qualified contractors with domain expe- | | 24 | rience and expertise, while ensuring that such advice | | 25 | comes from sources that are objective and unbiased. | | 1 SEC. 831. PROTECTION OF APOLLO LANDING SITES. | |---| | 2 (a) Assessment.—The Director of the Office of | | 3 Science and Technology Policy, in consultation with rel- | | 4 evant Federal agencies and stakeholders, shall assess the | | 5 issues relating to protecting and preserving historically | | 6 important Apollo Program lunar landing sites and Apollo | | 7 program artifacts residing on the lunar surface, including | | 8 those pertaining to Apollo 11 and Apollo 17. | | 9 (b) Contents.—In conducting the assessment, the | | 10 Director shall include— | | 11 (1) a determination of what risks to the protec- | | tion and preservation of those sites and artifacts | | exist or may exist in the future; | | (2) a determination of what measures are re- | | quired to ensure such protection and preservation; | | 16 (3) a determination of the extent to which addi- | | 17 tional domestic legislation or international treaties | | or agreements will be required; and | | 19 (4) specific recommendations for protecting and | | preserving those lunar landing sites and artifacts. | | 21 (c) REPORT.—Not later than 1 year after the date | | 22 of enactment of this Act, the Director shall submit to the | | 23 appropriate committees of Congress the results of the as- | | 24 sessment. | | 1 | SEC. 832. NASA LEASE OF NON-EXCESS PROPERTY. | |----|--| | 2 | Section 20145(g) of title 51, United States Code, is | | 3 | amended by striking "10 years after December 26, 2007" | | 4 | and inserting "December 31, 2018". | | 5 | SEC. 833. TERMINATION LIABILITY. | | 6 | It is the sense of Congress that— | | 7 | (1) the ISS, the Space Launch System, and the | | 8 | Orion will enable the Nation to continue operations | | 9 | in low-Earth orbit and to send its astronauts to deep | | 10 | space; | | 11 | (2) the James Webb Space Telescope will revo- | | 12 | lutionize our understanding of star and planet for- | | 13 | mation and how galaxies evolved, and will advance | | 14 | the search for the origins of our universe; | | 15 | (3) as a result of their unique capabilities and | | 16 | their critical contribution to the future of space ex- | | 17 | ploration, these systems have been designated by | | 18 | Congress and the Administration as priority invest- | | 19 | ments; | | 20 | (4) contractors are currently holding program | | 21 | funding, estimated to be in the hundreds of millions | | 22 | of dollars, to cover the potential termination liability | | 23 | should the Government choose to terminate a pro- | | 24 | gram for convenience; | | 1 | (5) as a result, hundreds of millions of taxpayer | |-----|---| | 2 | dollars are unavailable for meaningful work on these | | 3 | programs; | | 4 | (6) according to the Government Accountability | | 5 | Office, the Administration procures most of its | | 6 | goods and services through contracts, and it termi- | | . 7 | nates very few of them; | | 8 | (7) in fiscal year 2010, the Administration ter- | | 9 | minated 28 of 16,343 active contracts and orders, a | | 10 | termination rate of about 0.17 percent; and | | 11 | (8) the Administration should vigorously pursue | | | a policy on termination liability that maximizes the | | 12 | utilization of its appropriated funds to make max- | | 13 | imum progress in meeting established technical goals | | 14 | imum progress in meeting established book priority pro- | | 15 | and schedule milestones on these high-priority pro- | | 16 | grams. | | 17 | SEC. 834. INDEPENDENT REVIEWS. | | 18 | Not later than 270 days after the date of enactment | | 19 | of this Act, the Administrator shall submit to the appro- | | 20 | priate committees of Congress a report describing— | | 21 | (1) the Administration's procedures for con- | | 22 | is larged out reviews of projects and pro- | | 23 | Life arele milestones: | | | | | 1 | (2) how the Administration ensures the inde- | |----|---| | 2 | pendence of the individuals who conduct those re- | | 3 | views prior to their assignment; | | 4 | (3) the internal and external entities inde- | | 5 | pendent of project and program management that | | 6 | conduct reviews of projects and programs at life | | 7 | cycle milestones; and | | 8 | (4) how the Administration ensures the inde- | | 9 | pendence of such entities and their members. | | 10 | SEC. 835. NASA ADVISORY COUNCIL. | | 11 | (a) Assessment.—The Administrator shall enter | | 12 | into an arrangement with the National Academy of Public | | 13 | Administration to assess the effectiveness of the NASA | | 14 | Advisory Council and to make recommendations to Con- | | 15 | gress for any change to— | | 16 | (1) the functions of the Council; | | 17 | (2) the appointment of members to the Council; | | 18 | (3) the qualifications for members of the Coun- | | 19 | eil; | | 20 | (4) the duration of terms of office for members | | 21 | of the Council; | | 22 | (5) the frequency of meetings of the Council; | | 23 | (6) the structure of leadership and Committees | | 24 | of the Conneil: and | | 1 (2) Sunset.—Effective September 30, 2017, | |--| | 2 section 20113(g) of title 51, United States Code, is | | amended by striking "and Congress". | | 4 SEC. 836. COST ESTIMATION. | | 5 (a) Sense of Congress.—It is the sense of Con- | | 6 gress that— | | 7 (1) realistic cost estimating is critically impor- | | tant to the ultimate success of major space develop- | | 9 ment projects; and | | 10 (2) the Administration has
devoted significant | | 11 efforts over the past 5 years to improving its cost es- | | timating capabilities, but it is important that the | | and evelop and | | 13 Administration continue his objects 14 implement guidance in establishing realistic cost es- | | 15 timates. | | 16 (b) GUIDANCE AND CRITERIA.—The Administrator | | 17 shall provide to its acquisition programs and projects, in | | 18 a manner consistent with the Administration's Space | | 19 Flight Program and Project Management Requirements— | | 20 (1) guidance on when to use an Independent | | 21 Cost Estimate and Independent Cost Assessment; | | 22 and | | 23 (2) criteria to use to make a determination | | 24 under paragraph (1). | | 135 | |--| | 1 SEC. 837. FACILITIES AND INFRASTRUCTURE. | | 2 (a) Sense of Congress.—It is the sense of Con- | | 3 gress that— | | 4 (1) the Administration must address, mitigate, | | 5 and reverse, where possible, the deterioration of its | | 6 facilities and infrastructure, as their condition is | | 7 hampering the effectiveness and efficiency of re- | | 8 search performed by both the Administration and in- | | 9 dustry participants making use of Administration fa- | | 10 cilities, thus harming the competitiveness of the | | 11 United States aerospace industry; | | (2) the Administration has a role in providing | | laboratory capabilities to industry participants that | | 14 are not economically viable as commercial entities | | and thus are not available elsewhere; | | 16 (3) to ensure continued access to reliable and | | 17 efficient world-class facilities by researchers, the Δd - | | 18 ministration should establish strategic partnerships | | 19 with other Federal agencies, State agencies, FAA-li- | | censed spaceports, institutions of higher education, | | 21 and industry, as appropriate; and | | (4) decisions on whether to dispose of, main- | | tain, or modernize existing facilities must be made | | in the context of meeting Administration and other | | 25 needs, including those required to meet the activities | | 26 supporting the human exploration roadmap under | | 1 | section 432 of this Act, considering other national | |----|--| | 2 | laboratory needs as the Administrator deems appro- | | 3 | priate. | | 4 | (b) Policy.—It is the policy of the United States | | 5 | that the Administration maintain reliable and efficient fa- | | 6 | cilities and infrastructure and that decisions on whether | | 7 | to dispose of, maintain, or modernize existing facilities or | | 8 | infrastructure be made in the context of meeting future | | 9 | Administration needs. | | 10 | (e) Plan.— | | 11 | (1) In General.—The Administrator shall de- | | 12 | velop a facilities and infrastructure plan. | | 13 | (2) Goal.—The goal of the plan is to position | | 14 | the Administration to have the facilities and infra- | | 15 | structure, including laboratories, tools, and ap- | | 16 | proaches, necessary to meet future Administration | | 17 | and other Federal agencies' laboratory needs. | | 18 | (3) Contents.—The plan shall identify— | | 19 | (A) current Administration and other Fed- | | 20 | eral agency laboratory needs; | | 21 | (B) future Administration research and de- | | 22 | velopment and testing needs; | | 23 | (C) a strategy for identifying facilities and | | 24 | infrastructure that are candidates for disposal, | | that is consistent with the national strategic di- | |--| | rection set forth in— | | (i) the National Space Policy; | | (ii) the National Aeronautics Re- | | search, Development, Test, and Evaluation | | Infrastructure Plan; | | (iii) the National Aeronautics and | | Space Administration Authorization Act of | | 2005 (Public Law 109–155; 119 Stat. | | 2895), National Aeronautics and Space | | Administration Authorization Act of 2008 | | (Public Law 110-422; 122 Stat. 4779), | | and National Aeronautics and Space Ad- | | ministration Authorization Act of 2010 (42 | | U.S.C. 18301 et seq.); and | | (iv) the human exploration roadmap | | under section 432 of this Act; | | (D) a strategy for the maintenance, repair, | | upgrading, and modernization of Administra- | | upgrading, and modernization of zero | | tion facilities and infrastructure, including lab- | | oratories and equipment; | | (E) criteria for— | | (i) prioritizing deferred maintenance | | tasks; | | | | 1 | (ii) maintaining, repairing, upgrading, | |----|---| | 2 | or modernizing Λ dministration facilities | | 3 | and infrastructure; and | | 4 | (iii) implementing processes, plans, | | 5 | and policies for guiding the Administra- | | 6 | tion's Centers on whether to maintain, re- | | 7 | pair, upgrade, or modernize a facility or | | 8 | infrastructure and for determining the type | | 9 | of instrument to be used; | | 10 | (F) an assessment of modifications needed | | 11 | to maximize usage of facilities that offer unique | | 12 | and highly specialized benefits to the aerospace | | 13 | industry and the American public; and | | 14 | (G) implementation steps, including a | | 15 | timeline, milestones, and an estimate of re- | | 16 | sources required for carrying out the plan. | | 17 | (d) REQUIREMENT TO ESTABLISH POLICY.— | | 18 | (1) In general.—Not later than 180 days | | 19 | after the date of enactment of this Act, the Adminis- | | 20 | trator shall establish and make publicly available a | | 21 | policy that guides the Administration's use of exist- | | 22 | ing authorities to out-grant, lease, excess to the | | 23 | General Services Administration, sell, decommission, | | 24 | demolish, or otherwise transfer property, facilities, | | 25 | or infrastructure. | | 1 | (2) Criteria.—The policy shall include criteria | |----|--| | 2 | for the use of authorities, best practices, standard- | | 3 | ized procedures, and guidelines for how to appro- | | 4 | priately manage property, facilities, and infrastruc- | | 5 | ture. | | 6 | (e) Submission to Congress.—Not later than 1 | | 7 | year after the date of enactment of this Act, the Adminis- | | 8 | trator shall submit to the appropriate committees of Con- | | 9 | gress the plan developed under subsection (e). | | 10 | SEC. 838. HUMAN SPACE FLIGHT ACCIDENT INVESTIGA- | | 11 | TIONS. | | 12 | Section 70702 of title 51, United States Code, is | | 13 | amended— | | 14 | (1) by amending subsection (a)(3) to read as | | 15 | follows: | | 16 | "(3) any other orbital or suborbital space vehi- | | 17 | cle carrying humans that is— | | 18 | "(A) owned by the Federal Government; or | | 19 | "(B) being used pursuant to a contract or | | 20 | Space Act Agreement with the Federal Govern- | | 21 | ment for carrying a government astronaut or a | | 22 | researcher funded by the Federal Government; | | 23 | or"; and | | 24 | (2) by adding at the end the following: | | 25 | "(e) Definitions.—In this section: | | 1 | "(1) GOVERNMENT ASTRONAUT.—The term | |----|---| | 2 | 'government astronaut' has the meaning given the | | 3 | term in section 50902. | | 4 | "(2) Space act agreement.—The term | | 5 | 'Space Act Agreement' means an agreement entered | | 6 | into by the Administration pursuant to its other | | 7 | transactions authority under section 20113(e).". | | 8 | SEC. 839. ORBITAL DEBRIS. | | 9 | (a) FINDINGS.—Congress finds that— | | 10 | (1) orbital debris poses serious risks to the | | 11 | operational space capabilities of the United States; | | 12 | (2) an international commitment and integrated | | 13 | strategic plan are needed to mitigate the growth of | | 14 | orbital debris wherever possible; and | | 15 | (3) the delay in the Office of Science and Tech- | | 16 | nology Policy's submission of a report on the status | | 17 | of international coordination and development of or- | | 18 | bital debris mitigation strategies is inconsistent with | | 19 | such risks. | | 20 | (b) Reports.— | | 21 | (1) COORDINATION.—Not later than 90 days | | 22 | after the date of enactment of this Act, the Adminis- | | 23 | trator shall submit to the appropriate committees of | | 24 | Congress a report on the status of efforts to coordi- | | 25 | nate with foreign countries within the Inter-Agency | | 1 | Space Debris Coordination Committee to mitigate | |----|---| | 2 | the effects and growth of orbital debris under sec- | | 3 | tion 1202(b)(1) of the National Aeronautics and | | 4 | Space Administration Authorization Act of 2010 (42 | | 5 | U.S.C. 18441(b)(1)). | | 6 | (2) MITIGATION STRATEGY.—Not later than 90 | | 7 | days after the date of enactment of this Act, the Di- | | 8 | rector of the Office of Science and Technology Policy | | 9 | shall submit to the appropriate committees of Con- | | 10 | gress a report on the status of the orbital debris | | 11 | mitigation strategy required under section | | 12 | 1202(b)(2) of the National Aeronautics and Space | | 13 | Administration Authorization Act of 2010 (42 | | 14 | U.S.C. 18441(b)(2)). | | 15 | SEC. 840. REVIEW OF ORBITAL DEBRIS REMOVAL CON- | | 16 | CEPTS. | | 17 | (a) Sense of Congress.—It is the sense of Con- | | 18 | gress that— | | 19 | (1) orbital debris in low-Earth orbit poses sig- | | 20 | nificant risks to spacecraft; | | 21 | (2) such orbital debris may increase due to col- | | 22 | lisions between existing debris objects; and | | 23 | (3) understanding options to address and re- | | 24 | move orbital debris is important for ensuring safe | | 1 | and effective spacecraft operations in low-Earth | |----|---| | 2 | orbit. | | 3 | (b) Review.— | | 4 | (1) IN GENERAL.—Not later than 270 days | | 5 | after the date of
enactment of this Act, the Adminis- | | 6 | trator— | | 7 | (Δ) in collaboration with the heads of other | | 8 | relevant Federal agencies, shall solicit and re- | | 9 | view concepts and options for removing orbital | | 10 | debris from low-Earth orbit; and | | 11 | (B) shall submit to the appropriate com- | | 12 | mittees of Congress a report on the solicitation | | 13 | and review under subparagraph (A), including | | 14 | recommendations on the best options for de- | | 15 | creasing the risks associated with orbital debris. | | 16 | (2) REQUIREMENTS.—The solicitation and re- | | 17 | view under paragraph (1) shall address the require- | | 18 | ments for and feasibility of developing and imple- | | 19 | menting each of the options. | | 20 | SEC. 841. SPACE ACT AGREEMENTS. | | 21 | (a) Sense of Congress.—It is the sense of Con- | | 22 | gress that, when used appropriately, Space Act Agree- | | 23 | ments can provide significant value in furtherance of | | 24 | NASA's mission. | | 1 | (b) Funded Space Act Agreements.—To the ex- | |----|--| | 2 | tent appropriate, the Administrator shall seek to maximize | | 3 | the value of contributions provided by other parties under | | 4 | a funded Space Act Agreement in order to advance | | 5 | NASA's mission. | | 6 | (e) Non-exclusivity.— | | 7 | (1) In general.—The Administrator shall, to | | 8 | the greatest extent practicable, issue each Space Act | | 9 | Agreement— | | 10 | (Λ) except as provided in paragraph (2), | | 11 | on a nonexclusive basis; | | 12 | (B) in a manner that ensures all non-gov- | | 13 | ernment parties have equal access to NΛSA re- | | 14 | sources; and | | 15 | (C) exercising reasonable care not to reveal | | 16 | unique or proprietary information. | | 17 | (2) Exclusivity.—If the Administrator deter- | | 18 | mines an exclusive arrangement is necessary, the | | 19 | Administrator shall, to the greatest extent prac- | | 20 | ticable, issue the Space Act Agreement— | | 21 | (A) utilizing a competitive selection process | | 22 | when exclusive arrangements are necessary; and | | 23 | (B) pursuant to public announcements | | 24 | when exclusive arrangements are necessary. | | 1 | (d) Transparency.—The Administrator shall pub- | |----|--| | 2 | liely disclose on the Administration's website and make | | 3 | available in a searchable format each Space Act Agree- | | 4 | ment, including an estimate of committed NASA resources | | 5 | and the expected benefits to agency objectives for each | | 6 | agreement, with appropriate redactions for proprietary, | | 7 | sensitive, or classified information, not later than 60 days | | 8 | after such agreement is signed by the parties. | | 9 | (e) Annual Reports.— | | 10 | (1) REQUIREMENT.—Not later than 90 days | | 11 | after the end of each fiscal year, the Administrator | | 12 | shall submit to the appropriate committees of Con- | | 13 | gress a report on the use of Space Act Agreement | | 14 | authority by the Administration during the previous | | 15 | fiscal year. | | 16 | (2) CONTENTS.—The report shall include for | | 17 | each Space Act Agreement in effect at the time of | | 18 | the report— | | 19 | (A) an indication of whether the agreement | | 20 | is a reimbursable, non-reimbursable, or funded | | 21 | Space Act Agreement; | | 22 | (B) a description of— | | 23 | (i) the subject and terms; | | 24 | (ii) the parties; | | 25 | (iii) the responsible— | | | · · · · · · · · · · · · · · · · · · · | |----|---| | | 145 | | 1 | (I) Mission Directorate; | | 2 | (II) Center; or | | 3 | (III) headquarters element; | | 4 | (iv) the value; | | 5 | (v) the extent of the cost sharing | | 6 | among Federal Government and non-Fed- | | 7 | eral sources; | | 8 | (vi) the time period or schedule; and | | 9 | (vii) all milestones; and | | 10 | (C) an indication of whether the agreement | | 11 | was renewed during the previous fiscal year. | | 12 | (3) ANTICIPATED AGREEMENTS.—The report | | 13 | shall include a list of all anticipated reimbursable, | | 14 | non-reimbursable, and funded Space Act Agreements | | 15 | for the upcoming fiscal year. | | 16 | (4) CUMULATIVE PROGRAM BENEFITS.—The | | 17 | report shall include, with respect to each Space Act | | 18 | Agreement covered by the report, a summary of— | | 19 | (Λ) the technology areas in which research | | 20 | projects were conducted under that agreement; | | 21 | (B) the extent to which the use of that | | 22 | agreement— | | 23 | (i) has contributed to a broadening of | | | · | the technology and industrial base avail- able for meeting Administration needs; and 24 #### S:\LEGCNSL\LEXA\DOR17\SC\BILL\S3346RE.7.xml | 1 | (ii) has fostered within the technology | |---|---| | 2 | and industrial base new relationships and | | 3 | practices that support the United States; | | 4 | and | | 5 | (C) the total amount of value received by | | 6 | the Federal Government during the fiscal year | | 7 | under that agreement. |